

COMUNE DI PADOVA

Settore Lavori Pubblici

CASTELLO CARRARESI INTERVENTO DI RESTAURO E RIQUALIFICAZIONE FUNZIONALE STRALCI

PROGETTO ESECUTIVO

IMPORTO COMPLESSIVO: Euro 5.400.00,00

Progetto: LLPP EDP 2018/137

Nome File: APPR 31

Luglio 2018

ELABORATO:

RELAZIONE DI CALCOLO

Scala Fase progetto Codice elaborato
P | E ST | RDC

Progettisti e Collaboratori

Progettista e Coordinatore alla Prog.: Arch. Domenico Lo Bosco

Collaboratori alla Progettazione: Arch. Giacomo Peruzzi

Arch. Luisa Tonietto

Arch. Arianna Garbin

Progettazione specialistica: Per.Ind. Enrico Boscaro

Per. Ind. Fabio Cappellato

SM Ingegneria S.r.l. Prof. Ing. Claudio Modena

Capo Settore

Arch, Luigino Gennaro

RUP

Arch. Stefano Benvegnù

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	1	di	182

SOMMARIO

2 NORMATIVA DI RIFERIMENTO E METODO DI CALCOLO	
3 INQUADRAMENTO NORMATIVO DELLA SISMICITÀ DEL SITO	9 11 11
	11 11
	11 11
4 SICUREZZA E PRESTAZIONI ATTESE	11
4.1 VITA NOMINALE, CLASSE D'USO E PERIODO DI RIFERIMENTO	11
4.2 COMBINAZIONE DELLE AZIONI	
5 CARATTERISTICHE DEI MATERIALI	13
5.1 MURATURA ESISTENTE	
5.2 ACCIAIO DA CARPENTERIA	
5.2.1 Strutture in acciaio esistenti	14
5.2.2 Nuovi elementi in acciaio	14
5.3 CALCESTRUZZI E BETONCINI	15
5.3.1 Strutture in c.a. esistenti	15
5.3.2 Nuove strutture in c.a	
5.4 ACCIAIO DA CEMENTO ARMATO	
5.5 LEGNO ESISTENTE	
6 AZIONI SULLE STRUTTURE	19
6.1 CARICHI PERMANENTI	19
6.2 SOVRACCARICHI DISTRUBUITI	19
6.3 SOVRACCARICHI – AZIONE DELLA NEVE	20
6.4 AZIONE DEL VENTO	20
6.5 AZIONE SISMICA	21
7 VERIFICA NUOVO CASTELLETTO METALLICO PER MONTACARICHI ESTERNO	23
8 VERIFICA NUOVO CASTELLETTO METALLICO PER ASCENSORE INTERNO	38
9 NUOVA SCALA INTERNA	49
9.1 VERIFICA DEL PARAPETTO	52
10 VERIFICA DELLA COPERTURA ESISTENTE - VALUTAZIONE DELL'INDICE DI RESISTENZA	AL
FUOCO	
11 VERIFICA DEI SOLAI DI INTERPIANO	
11.1 CONSOLIDAMENTO DEI SOLAI INTERPIANO (PIANO TERRA-PRIMO)	

APPR_31_ST_RDC Elaborato: File: APPR_31_ST_RDC.doc 00 Luglio 2018 Rev. del 2

di

Pagina

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

	59
11.1.2 Verifica solaio tipologia S1.3 e S1.4	60
11.1.3 Verifica solaio tipologia S1.5 (solaio Palma)	60
11.1.4 Verifica solaio tipologia S1.6	61
11.1.5 Verifica solaio tipologia S1.11	61
11.1.6 Verifica solaio tipologia S1.12	61
11.1.7 Verifica solaio tipologia S1.13	62
11.2 VERIFICA DEI NUOVI SOLAI INTERPIANO (PIANO PRIMO-SECONDO)	63
I2 VERIFICA DEI NUOVI ARCHITRAVI	65
12.1 VERIFICA DI ARCHITRAVI IN LEGNO 16X16	65
12.2 VERIFICA DI ARCHITRAVI IN LEGNO 16X14	66
12.3 VERIFICA DI ARCHITRAVI IN LEGNO 14X12	67
I3 VALUTAZIONE DELL'INDICE DI SICUREZZA SISMICA GLOBALE	
13.1 VERIFICA DEI PRINCIPALI MECCANISMI LOCALI	
13.1.1 Cinematismo Est A (stato di fatto): Ribaltamento porzione di facciata lato Est	
13.1.2 Cinematismo Est B (stato di fatto): Ribaltamento porzione di facciata lato Est	
13.1.3 Cinematismo Cortile Sud A (stato di fatto): Ribaltamento porzione di facciata Cortile lato Sud	
13.1.4 Cinematismo Cortile Sud B (stato di fatto): Ribaltamento porzione di facciata Cortile lato Sud	
13.1.5 Cinematismo Sud C (stato di fatto): Ribaltamento porzione di facciata lato Sud	
13.1.6 Cinematismo Sud D (stato di fatto): Ribaltamento porzione di facciata lato Sud	
13.1.7 Cinematismo Est A (stato di progetto): Ribaltamento porzione di facciata lato Est	
13.1.8 Cinematismo Est B (stato di progetto): Ribaltamento porzione di facciata lato Est	
13.1.9 Cinematismo Cortile Sud A (stato di progetto): Ribaltamento porzione di facciata Cortile lato Sud	
13.1.10 Cinematismo Cortile Sud B (stato di progetto): Ribaltamento porzione di facciata Cortile lato Sud	90
13.1.11 Cinematismo Sud C (stato di progetto): Ribaltamento porzione di facciata lato Sud	92
13.1.12 Cinematismo Sud D (stato di progetto): Ribaltamento porzione di facciata lato Sud	94
13.1.13 Conclusioni all'analisi dei principali meccanismi locali	96
13.2 VALUTAZIONE COMPLESSIVA DELLA RISPOSTA SISMICA DEL FABBRICATO	97
13.2.1 Analisi statica non lineare	98
13.2.2 Risultati del modello globale del corpo principale del Castello	101
13.2.3 Schema di analisi globale	102
13.2.4 Analisi 11 – Direzione +X – Forze Statiche – Eccentricità +430,85 cm	103
13.2.5 Analisi 23 – Direzione -Y – Uniforme – Eccentricità +531,08 cm	105
14 EX LAVANDERIA	107
14.1 ANALISI DEI CARICHI	109
14.1.1 Carichi permanenti	109
14.1.1.1 Pesi propri degli elementi strutturali	109

File:

Elaborato:

APPR_31_ST_RDC

APPR_31_ST_RDC.doc

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Rev.	00	del	Luglio 2018
Pagina	3	di	182

14	4.1.1.2 Solai e copertura	109
14.1	1.2 Carichi accidentali	110
14.2	VERIFICA DEGLI ELEMENTI STRUTTURALI	111
14.2	2.1 Strutture in acciaio	113
14	4.2.1.1 Verifiche agli Stati Limite Ultimi (SLU +SLV)	113
14	4.2.1.2 Verifiche agli Stati Limite di Esercizio	115
14	4.2.1.3 Verifiche agli Stati Limite di operatività - SLO	116
14	4.2.1.4 Giunto sismico	118
14.2	2.2 Strutture di fondazione	119
14	4.2.2.1 Travi in c.a	119
14	4.2.2.2 Micropali di fondazione	121
14.2	2.3 Principali nodi e giunti	122
<u>G</u>	iunto di base tipo 1 (senza controventi)	122
<u>G</u>	iunto di base tipo 2 (con controventi)	123
<u>Pi</u>	iastre controventi di base	128
	iastre controventi elevazione	
	odo TRAVE HEA160	
	odo TRAVE HEA220	
	2.4 Solai	
	4.2.4.1 Solaio piano terra-piano primo	
	4.2.4.2 Solaio di copertura	
	STRUTTURA NUOVA SCALA "EX LAVANDERIA"	
	3.1 Principali nodi e giunti	
	odo UPN220 – IPE220	
	odo UPN220 – IPE220	
	3.2 Verifica dei parapetti	
15 VA	SCA ANTINCENDIO	167
15.1	DESCRIZIONE DEL MANUFATTO	168
15.2	AZIONI AGENTI	169
15.3	VERIFICA A SOLLEVAMENTO	172
15.4	VERIFICHE GEOTECNICHE	172
15.5	VERIFICHE STRUTTURALI VASCA	175

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	4	di	182

1 INTRODUZIONE

La presente relazione ha come oggetto gli interventi di carattere strutturale nel contesto del progetto di riqualificazione dell'ala sud del Castello Carrarese a Padova. Si elencano in maniera sintetica i principali interventi previsti, identificati nella planimetria riportata di seguito:

Area di intervento 1: Ala sud

Principali interventi previsti:

- Interventi di consolidamento dei solai esistenti mediante realizzazione di solette in c.a. collaboranti estradossali oppure attraverso demolizione e ricostruzione degli stessi;
- Interventi di consolidamento delle pareti murarie mediante iniezioni di miscela legante a base di calce idraulica naturale e scuci-cuci;
- Sostituzione/rinforzo degli architravi lignei in evidente stato di degrado;
- Realizzazione di tiranti in acciaio alla quota della copertura.

Gli interventi si configurano come "Riparazione o intervento locale" secondo quanto riportato al par. 8.4. delle del D.M. 17.01.2018.

Area di intervento 2: Ex Lavanderia

Nella zona dell'ex lavanderia è prevista la demolizione del fabbricato esistente, ad eccezione di un unico muro di spina di valore storico, e la realizzazione di un nuovo fabbricato con struttura metallica, autonomo e svincolato dalle strutture adiacenti in muratura mediante opportuni giunti sismici.

Area di intervento 3: Vasca antincendio

Nella zona adiacente all'ex lavanderia, è prevista la realizzazione di una vasca antincendio interrata realizzata con platea e pareti in c.a. e solaio con lastre prefabbricate tipo predalles.

Aree di intervento 4 e 5: Nuove scale e ascensori

È prevista a realizzazione di due impianti di collegamento tra i vari livelli dell'ala sud del castello:

- Nuovo montacarichi esterno con castelletto portante realizzato con struttura metallica;
- Ascensore interno, con castelletto portante in acciaio, e nuova scala con struttura metallica.

Area di intervento 6: Locali tecnici ala est

Principali interventi previsti per la realizzazione di nuovi locali per l'alloggiamento degli impianti:

- Interventi di consolidamento della volta esistente mediante rete in fibra di basalto e acciaio inox;
- Interventi di consolidamento delle pareti murarie mediante iniezioni di miscela legante a base di calce e scuci e cuci:
- Consolidamento mediante soletta a terra per garantire l'appoggio degli impianti tecnici;
- Realizzazione di tiranti in acciaio alla quota della copertura.

Gli interventi si configurano come "Riparazione o intervento locale" secondo quanto riportato al par. 8.4. delle del D.M. 17.01.2018.

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	5	di	182

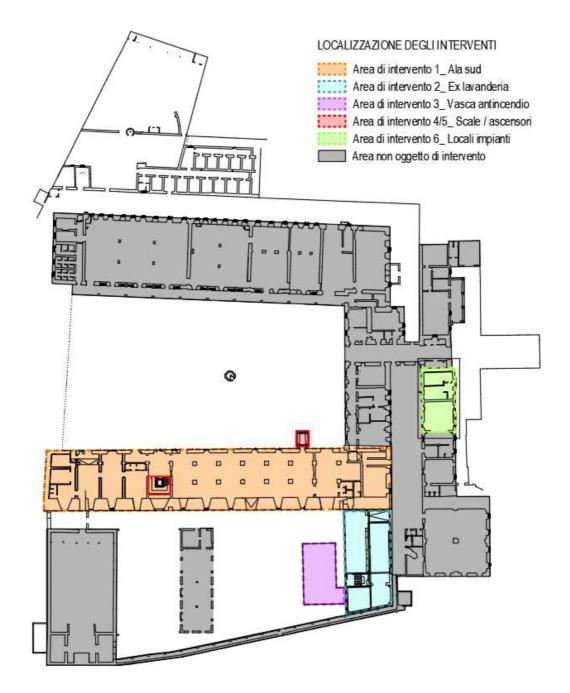


Figura 1: Individuazione interventi progettuali

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	6	di	182

2 NORMATIVA DI RIFERIMENTO E METODO DI CALCOLO

Si è fatto riferimento in generale per quanto possibile alla normativa italiana ed alle norme ed istruzioni elencate nel seguito:

- D.M. 17/01/2018, "Aggiornamento delle Norme tecniche per le costruzioni".
- Circolare Ministero delle Infrastrutture e dei Trasporti n. 617 del 02 febbraio 2009, Istruzioni per l'applicazione delle «Nuove norme tecniche per le costruzioni» di cui al Decreto Ministeriale 14 gennaio 2008.
- Decreto P.C.M. 9 Febbraio 2011 (G.U. n.47, 26/2/11 suppl. ord. n.54) Linee Guida per la valutazione e la riduzione del rischio sismico del patrimonio culturale con riferimento alle Norme Tecniche sulle costruzioni D.M. 14/01/08.
- Eurocodice UNI EN 1990:2006 "Criteri generali di progettazione strutturale"
- Eurocodice n. 1 UNI EN 1991-1-1:2004 "Azioni sulle strutture". Parte 1-1: Azioni in generale Pesi per unità di volume, pesi propri e sovraccarichi per gli edifici.
- Eurocodice n. 3 UNI EN 1993-1-1:2005 "Progettazione delle strutture in acciaio". Parte 1-1: Regole generali e regole per gli edifici.
- Eurocodice n. 6 UNI EN 1996-1-1:2006 "Progettazione delle strutture in muratura". Parte 1-1: Regole generali per strutture di muratura armata e non armata.
- Eurocodice n. 7 UNI EN 1997-1:2005 "Progettazione geotecnica". Parte 1: Regole generali.
- Eurocodice n. 8 UNI EN 1998-1:2005 "Progettazione delle strutture per la resistenza sismica". Parte 1: Regole generali, azioni sismiche e regole per gli edifici.
- Eurocodice n. 8 UNI EN 1998-3:2005 "Progettazione delle strutture per la resistenza sismica". Parte 3: Valutazione e adeguamento degli edifici.
- ICOMOS_ISCARSAH International Scientific Committee for Analysis and Restoration of Structural of Architectural heritage: Recommendations for the analysis, conservation and structural restoration of architectural heritage.
- ISO 13822 Bases for design of structures-Assessment of existing structures.
- ISO CD 13822 ANNEX I (Informative) Historic Structures.
- CEN TC346 Conservation of cultural property –WG1 "Condition survey of immovable heritage".
- CEN TC346 Conservation of cultural property WG2N 018: "Diagnosis of building structures".

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	7	di	182

2.1 METODO DI CALCOLO

Le analisi e le verifiche strutturali sono state eseguite seguendo le istruzioni previste nelle NTC 2018 e nella circolare n. 617 del 2 febbraio 2009. La valutazione del rischio sismico ha seguito inoltre le indicazioni riportate nelle Linee Guida per la valutazione e la riduzione del rischio sismico del patrimonio culturale. La ricerca dei parametri di sollecitazione è stata eseguita considerando le disposizioni di carico più gravose ed avvalendosi di codici di calcolo automatico per l'analisi strutturale.

Tutti i codici di calcolo automatico utilizzati per il calcolo e la verifica delle strutture e la redazione della presente relazione di calcolo sono di sicura ed accertata validità e sono stati impiegati conformemente alle loro caratteristiche. Si riportano in seguito i software impiegati.

PROSAP

Il codice di calcolo adottato è ALGOR SUPERSAP prodotto dalla ALGOR INTERACTIVE SYSTEMS, Inc. Pittsburgh, PA, USA. Il programma SUPERSAP implementa il metodo degli elementi finiti per strutture di forma qualunque, comunque caricate e vincolate, nell'ambito del comportamento lineare delle stesse.

La risoluzione del sistema K * u = F è condotta con l'algoritmo di Gauss modificato sulla matrice K globale suddivisa in blocchi.

La risoluzione delle equazioni del moto, ed in particolare l'applicazione dell'analisi dinamica prevista per il calcolo in zona sismica è condotta con il metodo dello spettro di risposta.

Si sottolinea che il solutore ALGOR SUPERSAP è stato sottoposto, con esito positivo e relativa certificazione, ai test N.A.F.E.M.S. (test di confronto della National Agency for Finite Element Methods and Standards in Inghilterra).

Il solutore ALGOR SUPERSAP è soggetto ad attività di controllo ai sensi della Q.A. (quality assurance), condizione essenziale per l'utilizzo dei codici di calcolo nell'ambito della progettazione nucleare ed off-shore. Come previsto al punto 10.2 delle NTC 2018 l'affidabilità del codice utilizzato, *PRO-SAP Professional Structural Analysis Program versione 2011, prodotto dalla 2S.I. s.r.l.* Software e Servizi per l'Ingegneria s.r.l., è stata verificata attraverso un numero significativo di casi prova in cui i risultati dell'analisi numerica sono stati confrontati con soluzioni teoriche.

E' possibile reperire la documentazione contenente alcuni dei più significativi casi trattati al seguente link: http://www.2si.it/Software/Affidabilità.htm

3 Muri – S.T.A. DATA

Programma di calcolo strutturale per edifici in muratura della STA DATA. Esegue il calcolo di strutture spaziali utilizzando elementi finiti monodimensionali, modellando l'edificio secondo il criterio del "telaio equivalente", nel rispetto delle indicazioni normative del D.M. 2018.

Il programma utilizza il metodo di calcolo FME (Frame by Macro Element) che schematizza la struttura attraverso un telaio equivalente costituito da macroelementi strutturali (murature, travi. Catene, solai, pilastri, setti), permettendo di cogliere il comportamento sismico della struttura.

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	8	di	182

Seguendo le indicazioni della Normativa, la risposta strutturale è descritta in termini di spostamenti piuttosto che di forze, tenuto conto della maggiore sensibilità del danneggiamento agli spostamenti imposti. L'analisi statica non lineare (pushover) caratterizza il sistema sismico resistente tramite curve di capacità: analisi "statiche" in quanto la forzante esterna è applicata staticamente alla struttura e "non lineari" a causa del modello comportamentale assunto per gli elementi resistenti della struttura.

http://www.stadata.com/?area=Software&table=3Muri Descrizione&mnu=4

VCASLU

Software di libera distribuzione per le verifiche delle sezioni in c.a., sviluppato dal Prof. Ing. P. Gelfi del Dipartimento di Ingegneria Strutturale dell'Università di Brescia. Consente di eseguire verifiche, sia con il metodo delle tensioni ammissibili che degli stati limite, per sollecitazioni di presso-tensoflessione retta o deviata.

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	9	di	182

3 INQUADRAMENTO NORMATIVO DELLA SISMICITÀ DEL SITO

La sismicità storica della zona è caratterizzata da eventi di medio-bassa intensità, come risulta dal seguente elenco tratto dal sito ufficiale dell'INGV (Istituto Nazionale di Geofisica e Vulcanologia) è stato possibile costruire la tabella riportata di seguito.

Effetti							In occasione del terremoto del			
Int.	Anno M	e Gi	. Но	Mi	Se		Area epicentrale	NMDP	Io	Mw
4-5	₽ 1929	04	20	01	10		Bolognese	109	7	5.36
3-4	1929	04	22	08	26		Bolognese	41	6-7	5.10
3	₽ 1929	04	28	19	40		Bolognese	20	6	4.73
4	1929	04	29	18	36		Bolognese	45	6	5.20
3-4	1929	05	11	19	23		Bolognese	64	6-7	5.29
3	₽ 1930	10	30	07	13		Senigallia	268	8	5.83
3-4	1931	12	25	11	41		Friuli	45	7	5.25
3	1932	02	19	12	57	1	Garda orientale	21	7-8	5.16
4	1934	11	30	02	58	2	Adriatico settentrionale	51	5	5.30
4	1935	06	05	11	48		Faentino	27	6	5.23
5	₽ 1936	10	18	03	10		Alpago Cansiglio	269	9	6.06
NF	₽ 1945	12	15	05	27		Oltrepò Pavese	12	6	4.72
3	₫ 1951	05	15	22	54		Lodigiano	179	6-7	5.17
F	₽ 1956	02	20	01	29	2	Padovano	23	5-6	4.49
NF	₽ 1967	12	09	03	09	5	Adriatico centrale	22		4.36
5	₽ 1967	12	30	04	19		Emilia Romagna orientale	40	6	5.05
4-5	1971	07	15	01	33	2	Parmense	228	8	5.51
4	1972	10	25	21	56	1	Appennino settentrionale	198	5	4.87
5-6	₽ 1976	05	06	20			Friuli	770	9-10	6.45
5	₽ 1976	09	11	16	35	0	Friuli	40	7-8	5.60
6	₽ 1976	09	15	09	21	1	Friuli	54	8-9	5.95
5	₽ 1977	09	16	23	48	0	Friuli	94	6-7	5.26
3	1983	11	09	16	29	5	Parmense	850	6-7	5.04
2-3	₽ 1986	12	06	17	07	1	Ferrarese	604	6	4.43
4	₽ 1987	05	02	20	43	5	Reggiano	802	6	4.71
5	₽ 1989	09	13	21	54	0	Prealpi Vicentine	779	6-7	4.85
3-4	₽ 1996	10	15	09	55	5	Pianura emiliana	135	7	5.38
4	₫ 2003	09	14	21	42	5	Appennino bolognese	133	6	5.24
4-5	₫ 2004	11	24	22	59	3	Garda occidentale	176	7-8	4.99
4	₫ 2008	12	23	15	24	2	Parmense	291	6-7	5.36
3	2011	07	17	18	30	2	Pianura lombardo-veneta	73	5	4.79

Tabella 1: Eventi sismici significativi per la zona di Padova

种交种人	CASTELLO CARRARESI - INTERVENTO DI RESTAURO E	Elaborato:	APPR_31_ST_RDC		
	RIQUALIFICAZIONE FUNZIONALE	File:	APPR_31_ST_RDC.doc		
	PROGETTO ESECUTIVO	Rev.	00	del	Luglio 2018
		Pagina	10	di	182

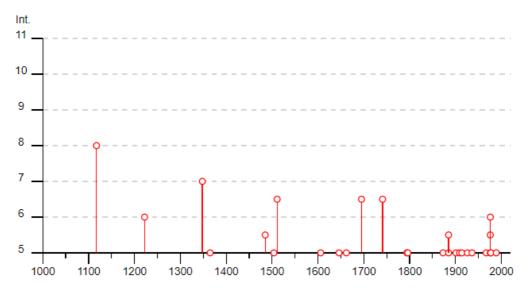


Figura 2: Storia dell'intensità sismica (Is) che ha coinvolto l'area di Padova.

Di ciò si trova naturalmente riscontro nelle vigenti Norme Tecniche per le Costruzioni, come risulta dalla Figura 3, in cui è riportata la mappa della pericolosità sismica della regione Veneto con i valori di accelerazione di picco su griglia con passo 0,05°.

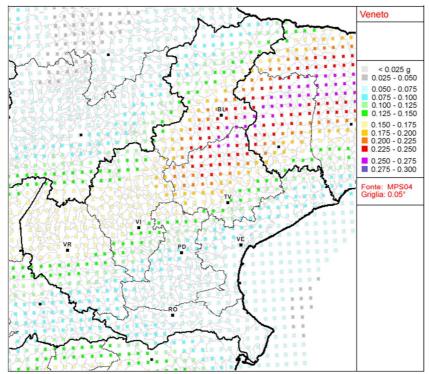


Figura 3: Mappa di pericolosità sismica della regione Veneto secondo OPCM 3519 (www.ingv.it)

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	11	di	182

4 SICUREZZA E PRESTAZIONI ATTESE

4.1 VITA NOMINALE, CLASSE D'USO E PERIODO DI RIFERIMENTO

In riferimento alla tabella 2.4.I, per l'edificio in oggetto è stata considerata una Vita Nominale $V_N \ge 50$ anni. L'edificio, sulla base della classificazione riportata nel paragrafo 2.4.2 delle NTC2018, rientra nella seguente classe d'uso a cui corrisponde il relativo coefficiente C_U , come definito in tabella 2.4.II delle NTC2018:

Classe d'uso:

III

Coefficiente d'uso Cu

1.5

Ne segue che, per la verifica nei confronti delle azioni sismiche, il periodo di riferimento è V_R = 75 anni, pari a V_N * C_U .

4.2 COMBINAZIONE DELLE AZIONI

Ai fini delle verifiche degli stati limite, si sono eseguite le combinazioni delle azioni previste nel paragrafo 2.5.3. delle NTC2018.

Per lo stato limite ultimo (SLU) è stata adottata la combinazione fondamentale dei carichi:

$$F_{SLU} = \gamma_{G1}G_1 + \gamma_{G2}G_2 + \gamma_{Q1}Q_{k1} + \sum \gamma_{Qi}\psi_{0i}Q_{ki}$$

Per lo stato limite di esercizio (SLE) sono state adottate le combinazioni caratteristica (rara):

$$F_d = G_1 + G_2 + Q_{k1} + \sum \psi_{0i} Q_{ki}$$

frequente:

$$F_d = G_1 + G_2 + \psi_{11}Q_{k1} + \sum \psi_{2i}Q_{ki}$$

quasi-permanente:

$$F_d = G_1 + G_2 + \sum \psi_{2i} Q_{ki}$$

Per le verifiche sismiche è stata adottata la combinazione sismica dei carichi:

$$F_d = E + G_1 + G_2 + \sum \psi_{2i} Q_{ki}$$

I valori dei coefficienti di combinazione ψ sono quelli riportati in tabella 2.5.I delle NTC2018.

Tab. 2.5.I - Valori dei coefficienti di combinazione

Categoria/Azione variabile	Ψοϳ	ψ_{1j}	ψ_{2j}
Categoria A - Ambienti ad uso residenziale	0,7	0,5	0,3
Categoria B - Uffici	0,7	0,5	0,3
Categoria C - Ambienti suscettibili di affollamento	0,7	0,7	0,6
Categoria D - Ambienti ad uso commerciale	0,7	0,7	0,6
Categoria E – Aree per immagazzinamento, uso commerciale e uso industriale Biblioteche, archivi, magazzini e ambienti ad uso industriale	1,0	0,9	0,8
Categoria F - Rimesse , parcheggi ed aree per il traffico di veicoli (per autoveicoli di peso ≤ 30 kN)	0,7	0,7	0,6

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	12	di	182

Categoria G – Rimesse, parcheggi ed aree per il traffico di veicoli (per autoveicoli		ı		
di peso > 30 kN)	0,7	0,5	0,3	
Categoria H - Coperture accessibili per sola manutenzione	0,0	0,0	0,0	
Categoria I – Coperture praticabili	da val	utarsi ca	so per	
Categoria K – Coperture per usi speciali (impianti, eliporti,)		caso		
Vento	0,6	0,2	0,0	
Neve (a quota ≤ 1000 m s.l.m.)	0,5	0,2	0,0	
Neve (a quota > 1000 m s.l.m.)	0,7	0,5	0,2	
Variazioni termiche	0,6	0,5	0,0	

I valori dei coefficienti parziali di sicurezza γ sono riportati nella tabella 2.6.I delle NTC2018, riferiti allo stato limite di resistenza della struttura A1.

Tab. 2.6.I - Coefficienti parziali per le azioni o per l'effetto delle azioni nelle verifiche SLU

		Coefficiente	EQU	A1	A2
		$\gamma_{\rm F}$			
Contract Co	Favorevoli	2/	0,9	1,0	1,0
Carichi permanenti G1	Sfavorevoli	Ϋ́G1	1,1	1,3	1,0
Contribution of the state of th	Favorevoli		0,8	0,8	0,8
Carichi permanenti non strutturali G ₂ ⁽¹⁾	Sfavorevoli	Y _{G2}	1,5	1,5	1,3
A minuti annutabili O	Favorevoli	2/	0,0	0,0	0,0
Azioni variabili Q	Sfavorevoli	Υ _{Qi}	1,5	1,5	1,3

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC				
File:	APPR_31_ST_RDC.doc				
Rev.	00	del	Luglio 2018		
Pagina	13	di	182		

5 CARATTERISTICHE DEI MATERIALI

5.1 MURATURA ESISTENTE

Concordemente con i risultati delle indagini eseguite sia nell'ala Sud/Est che le prove eseguite nell'ala Nord del Castello si riconosce il raggiungimento di un livello di conoscenza LC2. Tuttavia, visti i risultati delle prove di martinetto piatto, si decide di adottare i valori minimi di resistenza indicati dalla circolare, individuando le seguenti tipologie murarie,:

Tipologia muraria	f _m	το	E	G	w
Tipologia murana	(N/mm ²)	(N/mm^2)	(N/mm^2)	(N/mm^2)	(kN/m³)
Muratura in pietre a spacco con buona tessitura	3.20	0.065	1740	580	21
Mattoni pieni e malta di calce	2.40	0.060	1200	400	18

Tabella 2: Valori dei parametri meccanici considerati per i calcoli relativi al Castello

Come già evidenziato nei paragrafi precedenti l'ala Sud è in parte caratterizzata dalla presenza di muratura in pietrame con ricorsi in mattoni. In questa caso si è applicato ai soli parametri di resistenza (f_m e τ_0) il coefficiente migliorativo riportato in Tabella C8A.2.2 della Circolare d'Applicazione NTC. Diversamente per la muratura in pietra del piano terra viene applicato il coefficiente riduttivo "Nucleo Scadente" coerentemente con il notevole spessore del paramento.

Tipologia di muratura	Malta buona	Giunti sottili (<10 mm)	Ricorsi o listature	Connessio ne trasversale	Nucleo scadente e/o ampio	Iniezione di miscele leganti	Intonaco armato *
Muratura in pietrame disordinata (ciottoli, pietre erratiche e irregolari)	1,5	-	1,3	1,5	0,9	2	2,5
Muratura a conci sbozzati, con paramen-to di limitato spessore e	1,4	1,2	1,2	1,5	0,8	1,7	2
Muratura in pietre a spacco con buona tessitura	1,3	-	1,1	1,3	0,8	1,5	1,5
Muratura a conci di pietra tenera (tufo, calcarenite, ecc.)	1,5	1,5	-	1,5	0,9	1,7	2
Muratura a blocchi lapidei squadrati	1,2	1,2	-	1,2	0,7	1,2	1,2
Muratura in mattoni pieni e malta di calce	1,5	1,5	-	1,3	0,7	1,5	1,5

Tabella 3: Tabella C8A.2.2 Circolare d'applicazione NTC

Per quanto riguarda le murature inerenti alla "Lavanderia" e all'"Ala Ottocentesca", avendo raggiunto un livello di Conoscenza più basso pari a LC1, sono stati utilizzati i seguenti parametri:

Tipologia muraria	f _m	$ au_0$	E	G	w
Tipologia marana	(N/mm ²)	(N/mm^2)	(N/mm^2)	(N/mm^2)	(kN/m^3)
Mattoni pieni e malta di calce	2.40	0.060	1500	500	18

Tabella 4: Valori dei parametri meccanici considerati per i calcoli alla Lavanderia e all'ala ottocentesca

CASTELLO CARRARESI - INTERVENTO DI RESTAURO E
RIQUALIFICAZIONE FUNZIONALE

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	14	di	182

5.2 ACCIAIO DA CARPENTERIA

5.2.1 Strutture in acciaio esistenti

Per le strutture in acciaio esistenti (architravi, travi, ecc.), non essendo state eseguite prove specifiche, è stato considerato un acciaio riconducibile all'acciaio Fe360 (S235) al quale è stato applicato il fattore di confidenza pari a 1.35, corrispondente al livello di conoscenza LC1.

tensione caratteristica di snervamento	f_{yk}	235,0	MPa	
resistenza di calcolo	f_{vd}	165,8	MPa	-

Per le strutture in acciaio utilizzate negli interventi dell'Ala Nord si fa riferimento alla relazione indagini a cura dell'Ing. Carlo Bettio e alla relazione di calcolo del progetto "Accessibilità: Restauro e consolidamento delle strutture" a cura di SM Ingegneria in Gennaio/Febbraio 2015. Sono stati previsti profili in acciaio S275JR/S355J0 dalle seguenti caratteristiche:

ACCIAIO TIPO		S275 JR	
Modulo elastico	Е	210	[GPa]
Poisson	ν	0.3	
Modulo elastico tangenziale	G	80.77	[GPa]
Coefficiente di espansione termica lineare	α	12x10 ⁻⁶	[°C-1]
Tensione caratteristica di snervamento	f _{yk}	275	[N/mm ²]
Tensione caratteristica di rottura	f _{tk}	430	[N/mm ²]
Densità	ρ	7850	[kg/m³]

ACCIAIO TIPO		S355 J0	
Modulo elastico	E	210	[GPa]
Poisson	ν	0.3	
Modulo elastico tangenziale	G	80.77	[GPa]
Coefficiente di espansione termica lineare	α	12x10 ⁻⁶	[°C-1]
Tensione caratteristica di snervamento	f _{yk}	355	[N/mm ²]
Tensione caratteristica di rottura	f _{tk}	510	[N/mm ²]
Densità	ρ	7850	[kg/m ³]

Caratteristiche fisiche e meccaniche profili e piastre in acciaio

5.2.2 Nuovi elementi in acciaio

È previsto l'impiego di acciaio S275 J0 per la carpenteria metallica non inox (tabella 11.3.IX - NTC2018).

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	15	di	182

Tabella 5 – Caratteristiche meccaniche acciaio S275J0

Carico a rottura S275 J0	f _{tk}	430,0	MPa
Carico di snervamento S275 J0	f_{yk}	275,0	MPa

Si applica un coefficiente del materiale γ_{M0} = 1,05 (tabella 4.2.VII – NTC2018).

Per l'armatura dei micropali è previsto l'utilizzo di acciaio S355 J0 (tabella 11.3.IX - NTC2018).

Tabella 6 – Caratteristiche meccaniche acciaio S355 J0

Carico a rottura S355 J0	f _{tk}	510,0	MPa
Carico di snervamento S355 J0	f_{yk}	355,0	MPa

Si applica un coefficiente del materiale γ_{M0} = 1,05 (tabella 4.2.VII – NTC2018).

5.3 CALCESTRUZZI E BETONCINI

5.3.1 Strutture in c.a. esistenti

I solai dell'ala Sud si presentano con travi prefabbricati in c.a. (travi prefabbricate brevetto Ing. Palma – travetti tipo Varese) e getto in c.a. soprastante. Al secondo impalcato invece i solai esistenti sono in laterocemento gettato in opera e presentano segnali di forte stato di degrado. I solai dell'ala Est sono interamente in laterocemento ad esclusione di un ambiente che presenta un solaio in legno con dei rinforzi in acciaio sottostanti (2 IPE 500 affiancate).

Le indagini eseguite hanno rilevato resistenze basse per le solette gettate in opera e valori elevati per quanto riguarda le travi prefabbricate. In base alle indagini si sono quindi ipotizzate delle resistenze delle solette pari ad un calcestruzzo C16/20 e delle resistenze pari ad un C35/45 con riferimento alle travi prefabbricate.

Per le strutture calcestruzzo utilizzate negli interventi dell'Ala Nord ed Est si fa riferimento alla relazione indagini a cura dell'Ing. Carlo Bettio e alla relazione di calcolo del progetto "Accessibilità: Restauro e consolidamento delle strutture" a cura di SM Ingegneria in Gennaio/Febbraio 2015.

5.3.2 Nuove strutture in c.a.

Tabella 7 – Caratteristiche meccaniche per Calcestruzzo Classe C28/35 – rif. DM 17/01/2018

Classe di resistenza		C28/35	
Resistenza cubica caratteristica a compressione	R _{ck}	35,00	MPa
Peso specifico	ρ	25,00	kN/mc
Coefficiente espansione termica lineare	α	1x10 ⁻⁵	°C-1
Coefficiente di Poisson	V _{fess}	0,00	
	V _{non fess}	0,20	
Modulo elastico secante	E _{cm}	32588	MPa

CASTELLO CARRARESI - INTERVENTO DI RESTAURO E
RIQUALIFICAZIONE FUNZIONALE
PROGETTO ESECUTIVO
RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	16	di	182

Resistenza cilindrica caratteristica a compressione	f_{ck}	29,05	MPa
Resistenza cilindrica media a compressione	f_{cm}	37,05	MPa

Tabella 8 – Caratteristiche meccaniche per Calcestruzzo Classe C3037 – rif. DM 17/01/2018

Classe di resistenza		C30/37	
Resistenza cubica caratteristica a compressione	R _{ck}	37,00	MPa
Peso specifico	ρ	25,00	kN/mc
Coefficiente espansione termica lineare	α	1x10 ⁻⁵	°C ⁻¹
Coefficiente di Poisson	V _{fess}	0,00	
	V _{non fess}	0,20	
Modulo elastico secante	E _{cm}	33019	MPa
Resistenza cilindrica caratteristica a compressione	f _{ck}	30,71	MPa
Resistenza cilindrica media a compressione	f _{cm}	38,71	MPa

Per il riempimento dei micropali viene utilizzato un betoncino con classe di resistenza C32/40.

Tabella 9 – Caratteristiche meccaniche per calcestruzzo Classe C32/40

Classe di resistenza		C32/40	
Resistenza cubica caratteristica a compressione	R _{ck}	40,00	MPa
Peso specifico	ρ	25,00	kN/mc
Coefficiente espansione termica lineare	α	1x10 ⁻⁵	°C-1
Coefficiente di Poisson	V _{fess}	0,00	
	V _{non fess}	0,20	
Modulo elastico secante	E _{cm}	33643	MPa
Resistenza cilindrica caratteristica a compressione	f _{ck}	33,20	MPa
Resistenza cilindrica media a compressione	f _{cm}	41,20	MPa

Tabella 10 – Caratteristiche meccaniche per calcestrzzo Classe C35/45

Classe di resistenza		C35/45	
Resistenza cubica caratteristica a compressione	R _{ck}	45,00	MPa
Peso specifico	ρ	25,00	kN/mc
Coefficiente espansione termica lineare	α	1x10 ⁻⁵	°C-1
Coefficiente di Poisson	V _{fess}	0,00	

CASTELLO CARRARESI - INTERVENTO DI RESTAURO E	Elaborato:	APPR_31_ST_RDC
RIQUALIFICAZIONE FUNZIONALE	File:	APPR_31_ST_RDC.doc
PROGETTO ESECUTIVO	Rev.	00 del Luglio 2018
RELAZIONE DI CALCOLO	Pagina	17 di 182

	Vnon fess	0,20	
Modulo elastico secante	E _{cm}	34626	MPa
Resistenza cilindrica caratteristica a compressione	f _{ck}	37,35	MPa
Resistenza cilindrica media a compressione	f _{cm}	45,35	MPa

5.4 ACCIAIO DA CEMENTO ARMATO

Per quanto riguarda le armature del c.a. è previsto l'impiego di acciaio B450C ad aderenza migliorata, controllato in stabilimento.

Tabella 11 – Caratteristiche meccaniche dell'Acciaio B450C da C.A.

Tensione caratteristica di snervamento	fy	450,0	MPa
Tensione caratteristica di rottura	f _u	540,0	MPa

5.5 LEGNO ESISTENTE

All'interno del Castello troviamo strutture in legno recenti in copertura costituite da capriate lignee, arcarecci e listelli, strutture realizzate tra il 2005 e il 2008. Si sono di conseguenza assunte per le verifiche le caratteristiche meccaniche per un legno C24.

Caratteristiche meccaniche per legno C24 secondo UNI EN 338/2016

Si riportano le caratteristiche meccaniche di riferimento per legno avente classe di resistenza C24 secondo UNI EN 338/2016:

resistenza caratteristica a flessione	\mathbf{f}_{mk}	24	MPa
resistenza a trazione parallela alla fibratura	$\mathbf{f}_{t,0,k}$	14,0	MPa
resistenza a trazione perpendicolare alla fibratura	$f_{t,90,k}$	0,4	MPa
resistenza caratteristica a taglio	f_{vk}	4,0	MPa
resistenza caratt. a compr.parallela alla fibratura	$f_{c,0,k}$	21,0	MPa
resistenza caratt. a compr. perpend. alla fibratura	$f_{c,90,k}$	2,5	MPa
modulo elastico medio legno (parall. alla fibratura)	$E_{0,mean}$	11,0	kN/mm ²
modulo di elasticità tangenziale	G_{mean}	0,69	kN/mm²
densità media	$ ho_{ ext{mean}}$	350	daN/m³

Per quanto riguarda gli impalcati di piano del Castello Ala Est, in mancanza di indagini specifiche si assume a livello di verifica un legno esistente classificato C20

Caratteristiche meccaniche per legno C20 secondo UNI EN 338/2016

resistenza caratteristica a flessione f_{mk} 20 MPa

CASTELLO CARRARESI - INTERVENTO DI RESTAURO E	Elaborato:	APPR_31_ST_RDC		
RIQUALIFICAZIONE FUNZIONALE	File:	APPR_31_ST_RDC.doc		
PROGETTO ESECUTIVO	Rev.	00	del	Luglio 2018
RELAZIONE DI CALCOLO	Pagina	18	di	182

resistenza a trazione parallela alla fibratura	$f_{t,0,k}$	12,0	MPa
resistenza a trazione perpendicolare alla fibratura	$f_{t,90,k}$	0,4	MPa
resistenza caratteristica a taglio	f_{vk}	4,0	MPa
resistenza caratt. a compr.parallela alla fibratura	$f_{c,0,k}$	19,0	MPa
resistenza caratt. a compr. perpend. alla fibratura	$f_{c,90,k}$	2,3	MPa
modulo elastico medio legno (parall. alla fibratura)	$E_{0,mean}$	9,5	kN/mm²
modulo di elasticità tangenziale	G_{mean}	0,59	kN/mm²
densità media	$ ho_{mean}$	330	daN/m³

CASTELLO CARRARESI - INTERVENTO DI RESTAURO E	Elaborato:	APPR_31_ST_RDC		
RIQUALIFICAZIONE FUNZIONALE	File:	APPR_31_ST_RDC.doc		
PROGETTO ESECUTIVO	Rev.	00	del	Luglio 2018
RELAZIONE DI CALCOLO	Pagina	19	di	182

6 AZIONI SULLE STRUTTURE

6.1 CARICHI PERMANENTI

I carichi permanenti sono stati calcolati a partire dai seguenti pesi specifici o di superficie:

Legno strutture	ρ _{legno} =	600	daN/m³
Acciaio strutture	ρ _{acciaio} =	7850	daN/m³
Acciaio inox strutture	$\rho_{acc inox} =$	8000	daN/m³
Calcestruzzo armato	$ ho_{cls}$ =	2500	daN/m³
Massetto non strutturale in malta a base calce come da	ρ_{mass} =	700	daN/m³
indicazioni di progetto architettonico	•		

6.2 SOVRACCARICHI DISTRUBUITI

Per il calcolo dell'azione accidentale si sono considerati i valori dei carichi d'esercizio per le diverse categorie di edifici, riportati in Tabella 12 (Tab.3.1.II – NTC 2018). Per l'individuazione dei carichi utilizzati si fa riferimento alla tabella di seguito riportata.

Tabella 12 – Valori dei carichi di esercizio utilizzati

Categoria	Ambienti	q _k (kN/m ²)
А	Ambienti ad uso residenziale	
A	Sono compresi in questa categoria i locali di abitazione e i relativi servizi, gli alberghi	2,00
	Uffici	
В	Cat B1. Uffici non aperti al pubblico	2,00
	Cat B2. Uffici aperti al pubblico	3,00
	Ambienti suscettibili di affollamento	
	Cat. C1 Ospedali, ristoranti, caffè, banche, scuole.	3,00
С	Cat. C2 Balconi, ballatoi e scale comuni, sale convegni, cinema, teatri, chiese, tribune con posti fissi.	4,00
	Cat. C3 Ambienti privi di ostacoli per il libero movimento delle persone, quali musei, sale per esposizioni, stazioni ferroviarie, sale da ballo, palestre,	5,00
Н	Coperture e sottotetti	
11	Cat. H1 Coperture e sottotetti accessibili per la sola manutenzione	0,50

CASTELLO CARRARESI - INTERVENTO DI RESTAURO E	Elaborato:	APPR_31_ST_RDC		
RIQUALIFICAZIONE FUNZIONALE	File:	APPR_31_ST_RDC.doc		
PROGETTO ESECUTIVO	Rev.	00	del	Luglio 2018
RELAZIONE DI CALCOLO	Pagina	20	di	182

6.3 SOVRACCARICHI – AZIONE DELLA NEVE

L'azione della neve sulle strutture è stata determinata secondo quanto previsto dalle NTC18:

$$q_s = \mu_i \cdot q_{sk} \cdot C_E \cdot C_t$$
 (eq. 3.4.1 NTC-18)

Si riportano i parametri utilizzati per il calcolo dell'azione della neve sulle coperture:

Parametri azione della NEVE			
zona neve		II	
altezza sito	as	12	m
valore caratteristico di riferimento del carico neve	q_{sk}	100	daN/m²
coefficiente di esposizione	CE	1,00	
coefficiente termico	C_{t}	1,00	
Coefficiente di forma	μ 1	0,80	α = 24°.

6.4 AZIONE DEL VENTO

L'azione del vento è stata calcolata secondo quanto indicato al paragrafo 3.3 delle NTC2018. La pressione del vento è data dall'espressione:

$$p = q_b \cdot c_e \cdot c_p \cdot c_d$$

dove:

q_b è la pressione cinetica di riferimento;

ce è il coefficiente di esposizione;

c_p è il coefficiente di forma, funzione della tipologia e della geometria della costruzione;

c_d è il coefficiente dinamico.

Si riportano i parametri utilizzati per il calcolo dell'azione del vento.

Parametri azione del VENTO		
Zona	1	
Classe di rugosità del terreno	A	
Categoria di esposizione del sito	IV	
Altezza sito (sul livello del mare)	as = 12	m.s.l.m.m
Velocità di riferimento	vb = 25,00	m/s
Pressione cinetica di riferimento	qb = 0,390	kN/m2
Coefficiente di esposizione	ce = 1,93	
Coefficiente dinamico	cd = 1	

E-mail: infopd@smingegneria.it - Web: www.smingegneria.it

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	21	di	182

6.5 AZIONE SISMICA

I dati sismici utilizzati nelle verifiche sono stati elaborati con il software "Excel – Spettri NTC v. 1.03" messo a disposizione dal Consiglio Superiore dei Lavori Pubblici.

Partendo dalle coordinate geografiche di latitudine e longitudine si ottengono i parametri indipendenti dell'azione sismica e di conseguenza lo spettro di risposta elastica per la zona di Padova.

Si ipotizza una vita nominale V_N di 50 anni con un coefficiente d'uso C_u pari a III (al quale corrisponde un valore di 1.50). Castello Carrerese rientra infatti nella categoria III essendo quest'ultimo un edificio "il cui uso preveda affollamenti significativi [...]". Si ottiene un periodo di riferimento dell'azione sismica V_R pari a 75 anni.

$$V_R = V_N \cdot C_U$$

Da questo valore viene calcolato il periodo di ritorno T_R per ogni stato limite considerato al quale corrisponde una diversa probabilità di superamento, rispettivamente 81% per lo Stato Limite di Operatività (SLO), 63% per Lo Stato Limite di Danno (SLD), 10% per lo Stato Limite di Salvaguardia della Vita (SLV), e 5% per lo Stato limite di Collasso (SLC).

$$T_R = \frac{-V_R}{\ln 1 - P_{VR}} = \frac{-C_U \cdot V_N}{\ln 1 - P_{VR}}$$

Di seguito vengono riportati i parametri spettrali dell'azione simica per ogni stato limite e tempo di ritorno:

STATO LIMITE	T _R [anni]	a _g [g]	F ₀	T _C *
SLO	45	0,035	2,541	0,241
SLD	75	0,043	2,532	0,278
SLV	712	0,096	2,616	0,344
SLC	1462	0,122	2,608	0,357

Per quanto riguarda la categoria di sottosuolo, le indagini geotecniche integrative eseguite nel corso della campagna di indagini hanno permesso la caratterizzazione sismica del terreno. La relazione del Dott.Geol. Jacopo Boaga (Aprile 2014) riporta la seguente classificazione: suolo di categoria C: "Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di $V_{s,30}$ compresi tra 180 m/s e 360 m/s (ovvero 15 < N_{spt} < 50 nei terreni a grana grossa e 70 < $c_{u,30}$ < 250 kPa nei terreni a grana fina)."; considerata la pendenza del pendio inferiore a 15° è stata considerata una categoria topografica corrispondente a T1 (Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i \leq 15°), cui corrisponde un coefficiente S_T =1,00. Si riportano di seguito i parametri sismici dipendenti ed indipendenti e lo spettro di risposta di progetto.

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	22	di	182

Stato Limite di Riferimento	SLV (Stato Li	imite di salvagua	rdia della Vita)
Zona sismica		4	
Probabilità di eccedenza nel periodo di riferimento	P_{VR}	10%	
Periodo di ritorno azione sismica	T_R	712	anni
PARAMETRI INDIPENDENTI			
Accelerazione orizzontale massima al suolo	ag	0.096	g
Valore massimo del fattore di amplificazione dello spettro in accelerazione	F₀	2.616	
Periodo di inizio del tratto a velocità costante dello spettro in accelerazione	T*c	0.344	S
Categoria sottosuolo		С	
Coefficiente di amplificazione stratigrafica	$S_{\mathbb{S}}$	1.500	
	C_c	1.493	
Coefficiente di amplificazione topografica	S_{T}	1.000	
Fattore di struttura per analisi cinematica lineare	q	2.000	
PARAMETRI DIPENDENTI			
Coefficiente che tiene conto della categoria di sottosuolo e delle cond. topografiche	S	1.500	
Periodo corrispondente all'inizio dello spettro ad accelerazione costante	T_B	0.171	s
Periodo corrispondente all'inizio del tratto a velocità costante dello spettro	T_C	0.514	s
Periodo corrispondente all'inizio del tratto a spostamento costante dello spettro	T_D	1,984	s

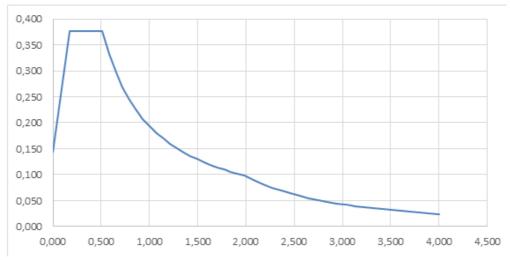


Figura 4: Spettro di risposta elastico

CASTELLO CARRARESI - INTERVENTO DI RESTAURO E
RIQUALIFICAZIONE FUNZIONALE

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	23	di	182

7 VERIFICA NUOVO CASTELLETTO METALLICO PER MONTACARICHI ESTERNO

È prevista la realizzazione di un castelletto metallico propedeutico all'installazione di un montacarichi esterno ad uso dell'edificio principale, individuato nella planimetria seguente.

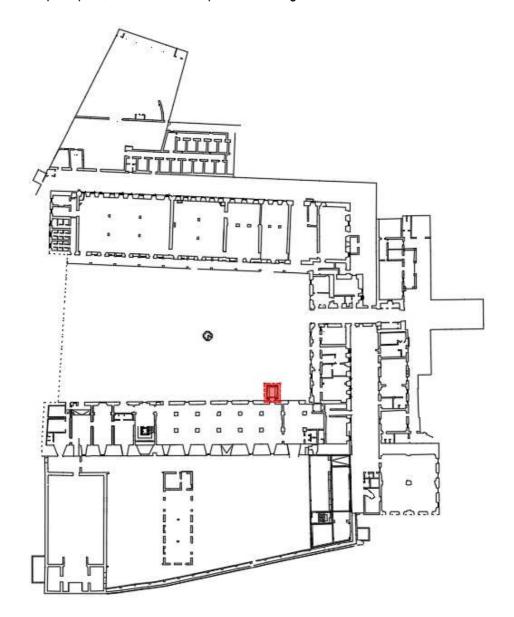
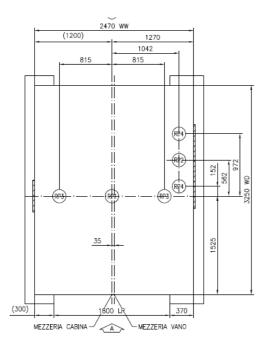
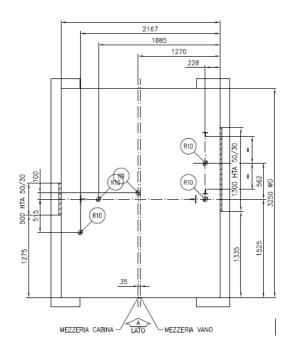


Figura 5: Individuazione montacarichi

Le verifiche statiche ed il dimensionamento della struttura metallica di supporto, nonché della fossa in calcestruzzo, è stato eseguito adottando i carichi e le forze riportati nella scheda tecnica del macchinario, e di seguito individuati. Per i carichi di neve e vento si rimanda allo specifico capitolo riguardante le azioni sulle strutture.

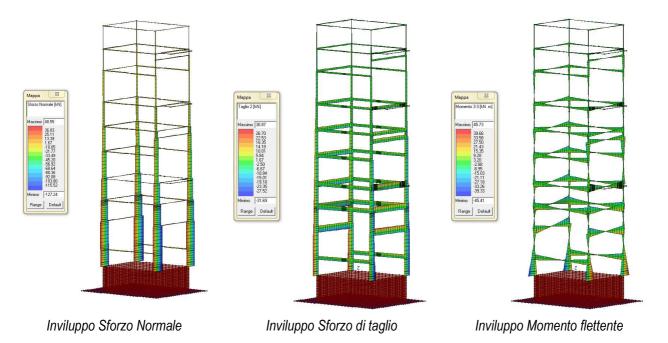



PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

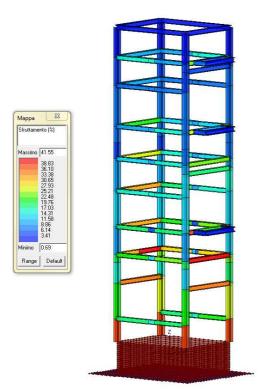
Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	24	di	182

REAZIONI SU FISSAGGI	REAZIONI SU FISSAGGI STAFFE GUIDE (max.) Numero/i impianto T-0002288119_N		
Numero/i impianto			
	Carico	Valore (kN)	
- T	P top	3.08	
top \	S top	3.88	
P top T top	T top	9.38	
	P top-1	6.88	
top-1 \	S top-1	6.9	
P top-1 T top-1	T top-1	7.98	
	P rest	7.65	
rest	S rest	2.61	
P rest T rest	T rest	4.01	

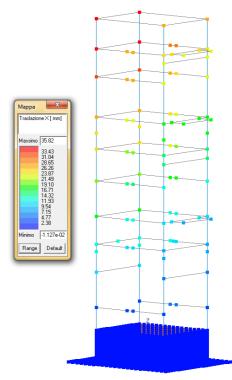
MASSIMI CARICHI DI REAZIONE SUL FONDO FOSSA				
Numero/i impianto	10020			
Carico	Valore (kN)	Valore (kN)	Valore (kN)	Valore (kN)
RP1	163	-	-	-
RP2	124	-	-	-
RP3	71	-	-	-
RP4	54	-	-	-
RP5	-	-	-	-
RP6	-	-	-	-


Qualora si provvedesse in fase di esecuzione lavori all'installazione di un macchinario diverso in termini di dimensioni, schema di carico ed entità dei carichi trasmessi sia alla struttura metallica che alle fondazioni, le presenti opere strutturali dovranno essere verificate ed eventualmente riprogettate.

Si riportano di seguito le verifiche eseguite agli SLU sul castelletto metallico soggetto alle azioni delle guide della cabina e alle azioni di vento, neve e sisma.



PROGETTO ESECUTIVO RELAZIONE DI CALCOLO


Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	25	di	182

La struttura così progettata raggiunge uno sfruttamento percentuale pari a circa 41% e uno spostamento massimo alla combinazione SLE nella direzione più sollecitata pari a 35,82 mm massimo, inferiore dello spostamento massimo consentito pari a 0,005h = 62 mm.

Sfruttamento massimo percentuale alla combinazione SLU

Spostamento massimo assoluto alla combinazione SLD dr < 0,005 h (7.3.11a)

CASTELLO CARRARESI - INTERVENTO DI RESTAURO E		Elaborato:	APPR_31_ST_RDC
	RIQUALIFICAZIONE FUNZIONALE	File:	APPR_31_ST_RDC.doc
I	PROGETTO ESECUTIVO	Rev.	00 del Luglio 2018
RELAZIONE DI CALCOLO		Pagina	26 di 182

La struttura è progettata in 12 pezzi con pilastri e mezze travi saldate in officina e giuntati in mezzeria dei traversi (Particolare A) e su due quote verticali (Particolare B) da flange. Si riportano le verifiche delle flange:

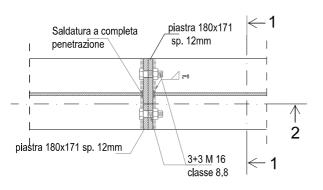
Flangia A

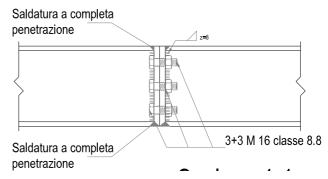
\sim			
C. VI	しつつけつ	710	nı.
SUI	lecita	ızıu	ıı.

Nodo.CMB	V2 [N]	V3 [N]	N [N]	M2 [N mm]	M3 [N mm]	T [N mm]
0.2	-510.6	-6455.8	1459.9	3825000.0	1319000.0	6160.0
0.3	-11231.9	-6455.9	-1087.9	3825000.0	2735000.0	6155.0

Calcolo resistenze

Resistenza a trazione dei bulloni		lei bulloni	$F_{tb,Rd} = 0.9 \cdot f_{tb} \cdot A_{res} / \gamma_{M2} =$	90333.1 N
Resiste	nza a punzonan	nento flangia	$B_{pf,Rd} = 0.6 \cdot \pi \cdot d_m \cdot t_f \cdot f_{tk} / \gamma_{M2} =$	186746.3 N
Bull.	F _{f,Rd} [N]	F _{t,Rd} [N]		
1	27668.2	27668.2		
2	10123.3	10123.3		
3	27668.2	27668.2		
4	27668.2	27668.2		
5	10123.3	10123.3		
6	27668.2	27668.2		


Legenda


 $\bar{F}_{f,Rd} = M_{res,m} / (B_m \cdot R_m)$ resistenza a flessione flangia $F_{t,Rd} = min [F_{tb,Rd}, B_{pf,Rd}, F_{f,Rd}]$ resistenza a trazione di progetto

Resistenza	a taglio dei bulloni	F _{vb}	$_{,Rd} = 0.6 \cdot f_{tb} \cdot A_{res} / \gamma_{M2}$	=	60222.1 N
Bull.	F _{bf,x,Rd} [N]	F _{v,x,Rd} [N]	F _{bf,y,Rd} [N]	$F_{v,y,Rd}[N]$	
1	127887.1	60222.1	111698.8	60222.1	
2	127887.1	60222.1	123840.0	60222.1	
3	127887.1	60222.1	111698.8	60222.1	
4	127887.1	60222.1	111698.8	60222.1	
5	127887.1	60222.1	123840.0	60222.1	
6	127887.1	60222.1	111698.8	60222.1	

Legenda

$$\begin{split} F_{bf,x,Rd} &= k \bullet \alpha \bullet f_{tk} \bullet \varnothing \bullet t_f \ / \ \gamma_{M2} \ \ \text{resistenza a rifollamento flangia in direzione } x \\ F_{v,x,Rd} &= min \left[\ F_{vb,Rd} \ , \ F_{bf,x,Rd} \ \right] \ \ \text{resistenza a taglio di progetto in direzione } x \\ F_{bf,y,Rd} &= k \bullet \alpha \bullet f_{tk} \bullet \varnothing \bullet t_f \ / \ \gamma_{M2} \ \ \text{resistenza a rifollamento flangia in direzione } y \\ F_{v,y,Rd} &= min \left[\ F_{vb,Rd} \ , \ F_{bf,y,Rd} \ \right] \ \ \text{resistenza a taglio di progetto in direzione } y \end{split}$$

CASTELLO CARRARESI - INTERVENTO DI RESTAURO E	Elaborato:	APPR_31_ST_RDC		
RIQUALIFICAZIONE FUNZIONALE	File:	APPR_31_ST_RDC.doc		
PROGETTO ESECUTIVO	Rev.	00	del	Luglio 2018
RELAZIONE DI CALCOLO	Pagina	27	di	182

Verifiche sui bulloni

1-Tagli	o e trazion	e (Nodo n. 0), CMB n. 3)						
Bull.	X [mm]		F _{v,Ed} [N]	$F_{v,Rd}[N]$	F _{t,Ed} [N]	F _{t,Rd} [N]	FV ₁	VER
1	50.50	-51.00	2163.6	60222.1	12245.1	Ī	27668.2	0.352050	Ok
2	50.50	0.00	2169.7	60222.1	9676.3	3	10123.3	0.718775	Ok
3	50.50	51.00	2175.8	60222.1	7107.5	5	27668.2	0.219618	Ok
4	-50.50	-51.00	2142.6	60222.1	4724.6	3	27668.2	0.157549	Ok
5	-50.50	0.00	2148.7	60222.1	2155.8	3	10123.3	0.187788	Ok
6	-50.50	51.00	2154.8	60222.1	0.0)	27668.2	0.035782	Ok
<u>2-Trazio</u>		n. 0, CMB n.	2)						
Bull.	X [mm]	Y [mm]	$F_{t,Ed}[N]$	$F_{t,Rd}[N]$	FV_2	VER			
1	50.50	-51.00	10721.6	27668.2	0.387505	Ok			
2	50.50	0.00	9821.2	10123.3	0.970162	Ok			
3	50.50	51.00	8920.9	27668.2	0.322426	Ok			
4	-50.50	-51.00	2191.9	27668.2	0.079223	Ok			
5	-50.50	0.00	1291.6	10123.3	0.127590	Ok			
6	-50.50	51.00	391.3	27668.2	0.014143	Ok			

<u>Legenda</u>

 $F_{v,Ed}$ forza di taglio agente sul bullone

F_{v,Rd} resistenza a taglio di progetto del bullone

F_{t,Ed} forza di trazione agente sul bullone

Ft,Rd resistenza a trazione di progetto del bullone

 $FV_1 = F_{v,Ed} \, / \, F_{v,Rd} \, + \, F_{t,Ed} \, / \, \big(\, \, 1.4 \, \bullet \, F_{t,Rd} \, \big)$

 $FV_2 = F_{t,Ed} / F_{t,Rd}$

 $VER \ \rightarrow \ FV_i \leq 1$

Verifiche sulle saldature profilo-flangia

Si considera la sezione di gola (avente altezza $a=s_c/2^{0.5}=5.657$) in posizione ribaltata: vengono considerate positive le tensioni normali di trazione e le tensioni tangenziali agenti verso destra e verso il basso. Tutte le tensioni sono espresse in N/mm^2 .

Verifica formula (4.2.78) (Nodo n. 0, CMB n. 3)					
Cordoni	n_{\perp}	t⊥	$ au_{ }$	FV ₁	VER ₁
Ala inferiore interno lato destro	81.92	0.00	-3.96	82.02	Ok
Ala inferiore interno lato sinistro	-44.30	0.00	-3.96	44.48	Ok
Anima lato destro	-16.34	0.00	-8.14	18.26	Ok
Anima lato sinistro	-16.34	0.00	-8.14	18.26	Ok
Ala superiore interno lato destro	43.58	0.00	-3.96	43.76	Ok
Ala superiore interno lato sinistro	-82.65	0.00	-3.96	82.74	Ok
Verifica formula (4.2.79) (Nodo n. 0, CMB n. 3)					
Cordoni	n_\perp	t⊥	$ au_{ }$	FV_2	VER_2
Ala inferiore interno lato destro	81.92	0.00	-3.96	81.92	Ok
Ala inferiore interno lato sinistro	-44.30	0.00	-3.96	44.30	Ok
Anima lato destro	-16.34	0.00	-8.14	16.34	Ok
Anima lato sinistro	-16.34	0.00	-8.14	16.34	Ok
Ala superiore interno lato destro	43.58	0.00	-3.96	43.58	Ok
Ala superiore interno lato sinistro	-82.65	0.00	-3.96	82.65	Ok

<u>Legenda</u>

- n⊥ tensione normale perpendicolare all'asse del cordone
- $t_{\perp}\,$ tensione tangenziale perpendicolare all'asse del cordone
- τ_{\parallel} tensione tangenziale parallela all'asse del cordone

CASTELLO CARRARESI - INTERVENTO DI RESTAURO E
RIQUALIFICAZIONE FUNZIONALE

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	28	di	182

$$\begin{aligned} FV_1 &= \left(\begin{array}{l} n_{\perp}^2 + t_{\perp}^2 + \tau_{\parallel}^2 \end{array} \right)^{0.5} \\ FV_2 &= \left| \begin{array}{l} n_{\perp} \right| + \left| t_{\perp} \right| \end{aligned}$$

 $VER_i \ \rightarrow \ FV_i \leq \beta_i \bullet f_{yk} \quad \ (\beta_1 \bullet f_{yk} = 192.50 \ N/mm^2 \quad \ \beta_2 \bullet f_{yk} = 233.75 \ N/mm^2)$

Verifica del momento di progetto del giunto (Nodo n. 0, CMB n. 3)

 $\begin{array}{ll} \text{Momento resistente del giunto} & M_{j,Rd} = \\ \text{Momento di progetto} & M_{j,Ed} = \\ \end{array} \begin{array}{ll} 7704942.0 \text{ N mm} \\ \text{3825000.0 N mm} \end{array}$

 $M_{i,Ed} / M_{i,Rd} = 0.496435$ Ok

Flangia B

Sollecitazioni:

Nodo.CMB	V2 [N]	V3 [N]	N [N]	M2 [N mm]	M3 [N mm]	T [N mm]
1722.1	8655.9	636.2	440.7	936154.0	3363000.0	-529.0
1722.16	-8179.5	2066.0	-28856.9	172474.0	-1519000.0	2607.0

Calcolo resistenze

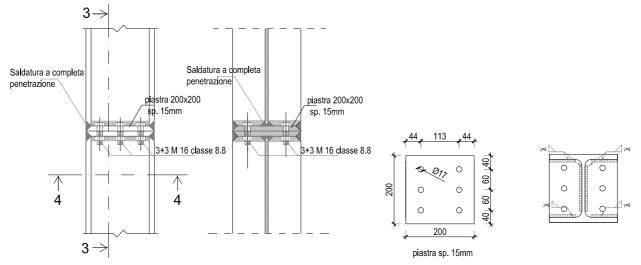
Resistenza a trazione dei bulloni		lei bulloni	$F_{tb,Rd} = 0.9 \cdot f_{tb} \cdot A_{res} / \gamma_{M2} =$	90333.1 N
Resisten	za a punzonan	nento flangia	$B_{pf,Rd} = 0.6 \cdot \pi \cdot d_m \cdot t_f \cdot f_{tk} / \gamma_{M2} =$	233432.9 N
Bull.	F _{f,Rd} [N]	F _{t,Rd} [N]		
1	42536.4	42536.4		
2	17064.3	17064.3		
3	42536.4	42536.4		
4	42557.6	42557.6		
5	17097.3	17097.3		
6	42557.6	42557.6		

Legenda

$$\begin{split} F_{f,Rd} &= M_{res,m} \, / \, (\ B_m \bullet R_m \,) \ resistenza \ a \ flessione \ flangia \\ F_{t,Rd} &= min \left[\ F_{tb,Rd} \, , \, B_{pf,Rd} \, , \, F_{f,Rd} \, \right] \ resistenza \ a \ trazione \ di \ progetto \end{split}$$

Resistenza a taglio dei bulloni		$F_{vb,l}$	60222.1 N		
Bull.	F _{bf,x,Rd} [N]	$F_{v,x,Rd}$ [N]	F _{bf,y,Rd} [N]	$F_{v,y,Rd}$ [N]	
1	176856.5	60222.1	161882.4	60222.1	
2	176856.5	60222.1	191223.5	60222.1	
3	176856.5	60222.1	161882.4	60222.1	
4	177261.2	60222.1	161882.4	60222.1	
5	177261.2	60222.1	191223.5	60222.1	
6	177261.2	60222.1	161882.4	60222.1	

Legenda


$$\begin{split} F_{bf,x,Rd} &= k \bullet \alpha \bullet f_{tk} \bullet \varnothing \bullet t_f \ / \ \gamma_{M2} \ \ \text{resistenza a rifollamento flangia in direzione } x \\ F_{v,x,Rd} &= min \ [\ F_{vb,Rd} \ , \ F_{bf,x,Rd} \] \ \ \text{resistenza a taglio di progetto in direzione } x \\ F_{bf,y,Rd} &= k \bullet \alpha \bullet f_{tk} \bullet \varnothing \bullet t_f \ / \ \gamma_{M2} \ \ \text{resistenza a rifollamento flangia in direzione } y \\ F_{v,y,Rd} &= min \ [\ F_{vb,Rd} \ , \ F_{bf,y,Rd} \] \ \ \text{resistenza a taglio di progetto in direzione } y \end{split}$$

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	29	di	182

Verifiche sui bulloni

1-Taglio	e trazione	(Nodo n	1722, CMB n. 1)						
Bull.	X [mm]	Y [mm]	F _{v,Ed} [N]	F _{v,Rd} [N]	F _{t,Ed} [N	1]	F _{t,Rd} [N]	FV_1	VER
1	56.30	-60.00	1447.4	60222.1	8763.	-	42536.4	0.171187	Ok
2	56.30	0.00	1447.4	60222.1	5042.	4	17064.3	0.235101	Ok
3	56.30	60.00	1447.5	60222.1	1321.	6	42536.4	0.046229	Ok
4	-56.20	-60.00	1445.6	60222.1	7934.	2	42557.6	0.157171	Ok
5	-56.20	0.00	1445.7	60222.1	4213.	4	17097.3	0.200033	Ok
6	-56.20	60.00	1445.7	60222.1	492.	7	42557.6	0.032276	Ok
	<u>ione</u> (Nodo		,						
Bull.	X [mm]	Y [mm]	$F_{t,Ed}[N]$	$F_{t,Rd}[N]$	FV_2	VER			
1	56.30	-60.00	8763.1	42536.4	0.206015	Ok			
2	56.30	0.00	5042.4	17064.3	0.295492	Ok			
3	56.30	60.00	1321.6	42536.4	0.031070	Ok			
4	-56.20	-60.00	7934.2	42557.6	0.186434	Ok			
5	-56.20	0.00	4213.4	17097.3	0.246438	Ok			
6	-56.20	60.00	492.7	42557.6	0.011577	Ok			

Legenda

F_{v,Ed} forza di taglio agente sul bullone

F_{v,Rd} resistenza a taglio di progetto del bullone

F_{t,Ed} forza di trazione agente sul bullone

Ft,Rd resistenza a trazione di progetto del bullone

 $FV_1 = F_{v,Ed} / F_{v,Rd} + F_{t,Ed} / (1.4 \cdot F_{t,Rd})$

 $FV_2 = F_{t,Ed} \ / \ F_{t,Rd}$

 $VER \ \rightarrow \ FV_i \leq 1$

Verifiche sulle saldature profilo-flangia

Si considera la sezione di gola (avente altezza $a = s_c / 2^{0.5} = 5.657$) in posizione ribaltata: vengono considerate positive le tensioni normali di trazione e le tensioni tangenziali agenti verso destra e verso il basso. Tutte le tensioni sono espresse in N/mm^2 .

Verifica formula (4.2.78) (Nodo n. 1722, CMB n. 1)

Cordoni	n_\perp	t⊥	$ au_{\parallel}$	FV_1	VER ₁
Ala inferiore interno lato destro	32.27	0.00	0.36	32.27	Ok
Ala inferiore interno lato sinistro	16.89	0.00	0.36	16.89	Ok

学》27117	CASTELLO CARRARESI - INTERVENTO DI RESTAURO E		Elaborato:	APPR_31_ST_RD	C		
	RIQUALIFICAZION	UALIFICAZIONE FUNZIONALE F		APPR_31_ST_RD	C.doc		
	PROGETTO E	SECUTIVO	Rev.	•	00	del	Luglio 2018
	RELAZIONE D		Pagina		30	di	182
Anima lato destro		16.10	0.00	5.71		17.08	Ok
Anima lato sinistro		16.10	0.00	5.71		17.08	Ok
Ala superiore interr	no lato destro	-16.62	0.00	0.36		16.62	Ok
Ala superiore interr	no lato sinistro	-32.00	0.00	0.36		32.00	Ok
Verifica formula (4.2.	. <u>79)</u> (Nodo n. 1722, C	MB n. 1)					
Cordoni		n_\perp	t⊥	$ au_{ }$		FV_2	VER ₂
Ala inferiore interno	lato destro	32.27	0.00	0.36		32.27	Ok
Ala inferiore interno	lato sinistro	16.89	0.00	0.36		16.89	Ok
Anima lato destro		16.10	0.00	5.71		16.10	Ok
Anima lato sinistro		16.10	0.00	5.71		16.10	Ok
Ala superiore interr	no lato destro	-16.62	0.00	0.36		16.62	Ok
Ala superiore interr	no lato sinistro	-32.00	0.00	0.36		32.00	Ok

Legenda

- n_{\perp} tensione normale perpendicolare all'asse del cordone
- t⊥ tensione tangenziale perpendicolare all'asse del cordone
- τ_{||} tensione tangenziale parallela all'asse del cordone

$$FV_1 = (n_{\perp}^2 + t_{\perp}^2 + \tau_{||}^2)^{0.5}$$

$$\mathsf{FV}_2 = |\mathsf{n}_\perp| + |\mathsf{t}_\perp|$$

$$VER_i \rightarrow FV_i \leq \beta_i \cdot f_{yk}$$
 $(\beta_1 \cdot f_{yk} = 192.50 \text{ N/mm}^2)$ $\beta_2 \cdot f_{yk} = 233.75 \text{ N/mm}^2)$

$$\beta_2 \cdot f_{vk} = 233.75 \text{ N/mm}^2$$

Verifica del momento di progetto del giunto (Nodo n. 1722, CMB n. 16)

7518631.0 N mm Momento resistente del giunto $M_{i,Rd} =$ Momento di progetto $M_{j,Ed} =$ 1519000.0 N mm

 $M_{i,Ed} / M_{i,Rd} = 0.202031$ Ok

Flangia di base:

Sollecitazioni:

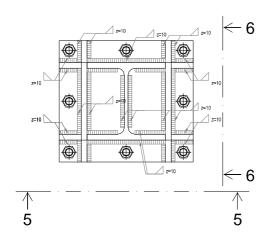
Nodo.CMB	V2 [N]	V3 [N]	N [N]	M2 [N mm]	M3 [N mm]	T [N mm]
689.1	27990.8	11720.6	39575.9	-8984000.0	-44130000.0	-108382.0

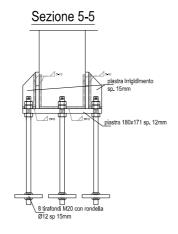
Calcolo resistenze

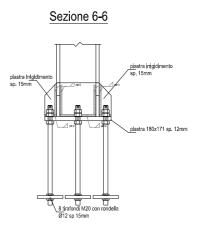
Resister	nza a trazione d	dei bulloni	$F_{tb,Rd} = 0.9 \cdot f_{tb} \cdot A_{res} / \gamma_{M2} =$	141145.5 N
Resister	nza a punzonar	nento flangia	$B_{pf,Rd} = 0.6 \cdot \pi \cdot d_m \cdot t_f \cdot f_{tk} / \gamma_{M2} =$	389054.8 N
Bull.	F _{f,Rd} [N]	F _{t,Rd} [N]		
1	94961.6	94961.6		
2	73884.6	73884.6		
3	94961.6	94961.6		
4	72107.0	72107.0		
5	72107.0	72107.0		
6	94961.6	94961.6		
7	73884.6	73884.6		
8	94961.6	94961.6		

Legenda

 $F_{f,Rd} = M_{res,m} / (B_m \cdot R_m)$ resistenza a flessione flangia $F_{t,Rd} = min \left[\; F_{tb,Rd} \; , \; B_{pf,Rd} \; , \; F_{f,Rd} \; \right] \; \; resistenza \; a \; trazione \; di \; progetto \;$




CASTELLO CARRARESI - INTERVENTO DI RESTAURO E	Elaborato:	APPR_31_ST_RDC		
RIQUALIFICAZIONE FUNZIONALE	File:	APPR_31_ST_RDC.doc		
PROGETTO ESECUTIVO	Rev.	00	del	Luglio 2018
RELAZIONE DI CALCOLO	Pagina	31	di	182


Resistenza	a taglio dei bulloni	F	94097.0 N		
Bull.	F _{bf,x,Rd} [N]	$F_{v,x,Rd}[N]$	F _{bf,y,Rd} [N]	$F_{v,y,Rd}[N]$	
1	91366.4	91366.4	91366.4	91366.4	
2	137600.0	94097.0	228416.0	94097.0	
3	91366.4	91366.4	91366.4	91366.4	
4	228416.0	94097.0	137600.0	94097.0	
5	228416.0	94097.0	137600.0	94097.0	
6	91366.4	91366.4	91366.4	91366.4	
7	137600.0	94097.0	228416.0	94097.0	
8	91366.4	91366.4	91366.4	91366.4	

Legenda

$$\begin{split} F_{bf,x,Rd} &= k \bullet \alpha \bullet f_{tk} \bullet \varnothing \bullet t_f \ / \ \gamma_{M2} \ \ \text{resistenza a rifollamento flangia in direzione x} \\ F_{v,x,Rd} &= min \ [\ F_{vb,Rd} \ , \ F_{bf,x,Rd} \] \ \ \text{resistenza a taglio di progetto in direzione x} \\ F_{bf,y,Rd} &= k \bullet \alpha \bullet f_{tk} \bullet \varnothing \bullet t_f \ / \ \gamma_{M2} \ \ \text{resistenza a rifollamento flangia in direzione y} \\ F_{v,y,Rd} &= min \ [\ F_{vb,Rd} \ , \ F_{bf,y,Rd} \] \ \ \text{resistenza a taglio di progetto in direzione y} \end{split}$$

Verifiche sui bulloni

1-Tagl	io e trazion	e (Nodo n.	689, CMB n. 1)						
Bull.	X [mm]	Y [mm]	F _{v,Ed} [N]	$F_{v,Rd}[N]$	$F_{t,Ed}$ [N	l]	$F_{t,Rd}$ [N]	FV ₁	VER
1	146.00	-131.00	3833.6	91366.4	0.0	Ō	94961.6	0.041958	Ok
2	146.00	0.00	3856.5	94097.0	9164.	9	73884.6	0.129587	Ok
3	146.00	131.00	3880.3	91366.4	52581.	6	94961.6	0.437980	Ok
4	0.00	-131.00	3769.9	94097.0	0.0	0	72107.0	0.040064	Ok
5	0.00	131.00	3817.4	94097.0	59896.	0	72107.0	0.633893	Ok
6	-146.00	-131.00	3706.4	91366.4	0.0	0	94961.6	0.040566	Ok
7	-146.00	0.00	3730.1	94097.0	23793.	7	73884.6	0.269669	Ok
8	-146.00	131.00	3754.7	91366.4	67210.	4	94961.6	0.546640	Ok
о т	'a a a (Alaa	L	ID - 4)						
		lo n. 689, CM	•		_, ,				
Bull.	X [mm]	Y [mm]	$F_{t,Ed}$ [N]	$F_{t,Rd}[N]$		VER			
1	146.00	-131.00	0.0	94961.6	0.000000	Ok			
2	146.00	0.00	9164.9	73884.6	0.124044	Ok			
3	146.00	131.00	52581.6	94961.6	0.553714	Ok			
4	0.00	-131.00	0.0	72107.0	0.000000	Ok			
5	0.00	131.00	59896.0	72107.0	0.830654	Ok			
6	-146.00	-131.00	0.0	94961.6	0.000000	Ok			
7	-146.00	0.00	23793.7	73884.6	0.322039	Ok			
8	-146.00	131.00	67210.4	94961.6	0.707764	Ok			

CASTELLO CARRARESI - INTERVENTO DI RESTAURO E	
RIQUALIFICAZIONE FUNZIONALE	

PROGETTO ESECUTIVO
RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	32	di	182

Legenda

F_{v,Ed} forza di taglio agente sul bullone

F_{v,Rd} resistenza a taglio di progetto del bullone

F_{t,Ed} forza di trazione agente sul bullone

Ft,Rd resistenza a trazione di progetto del bullone

 $FV_1 = F_{v,Ed} / F_{v,Rd} + F_{t,Ed} / (1.4 \cdot F_{t,Rd})$

 $FV_2 = F_{t,Ed} / F_{t,Rd}$ $VER \rightarrow FV_i \leq 1$

Verifiche sulle saldature profilo-flangia

Si considera la sezione di gola (avente altezza a = s_c / $2^{0.5}$ = 7.071) in posizione ribaltata: vengono considerate positive le tensioni normali di trazione e le tensioni tangenziali agenti verso destra e verso il basso. Tutte le tensioni sono espresse in N/mm².

Verifica formula (4.2.78) (Nodo n. 689, CMB n. 1)				
Cordoni	, n⊥	t⊥	$ au_{II}$	FV_1	VER ₁
Nerv. verticale lato destro esterno	-55.52	0.00	2.87	55.60	Ok
Nerv. vert. lato destro interno zona inferiore	-54.36	0.00	2.87	54.43	Ok
Nerv. vert. lato sinistro interno zona inferiore	-44.20	0.00	2.87	44.29	Ok
Nerv. verticale lato sinistro esterno	60.08	0.00	2.87	60.15	Ok
Nerv. orizz. inferiore lato destro esterno	-40.91	0.00	1.54	40.94	Ok
Ala inferiore esterno	-31.89	0.00	1.54	31.93	Ok
Nerv. orizz. inferiore lato sinistro esterno	-25.31	0.00	1.54	25.36	Ok
Nerv. orizz. inferiore lato destro interno	-33.63	0.00	1.54	33.66	Ok
Ala inferiore interno lato destro	-29.88	0.00	1.54	29.92	Ok
Ala inferiore interno lato sinistro	-23.42	0.00	1.54	23.48	Ok
Nerv. orizz. inferiore lato sinistro interno	-18.03	0.00	1.54	18.09	Ok
Nerv. vert. lato destro interno zona centrale	-27.56	0.00	2.87	27.71	Ok
Anima lato destro	24.39	0.00	2.87	24.56	Ok
Anima lato sinistro	24.39	0.00	2.87	24.56	Ok
Nerv. vert. lato sinistro interno zona centrale	32.11	0.00	2.87	32.24	Ok
Nerv. orizz. superiore lato destro interno	22.58	0.00	1.54	22.63	Ok
Ala superiore interno lato destro	27.98	0.00	1.54	28.02	Ok
Ala superiore interno lato sinistro	34.43	0.00	1.54	34.47	Ok
Nerv. orizz. superiore lato sinistro interno	38.18	0.00	1.54	38.22	Ok
Nerv. orizz. superiore lato destro esterno	29.87	0.00	1.54	29.90	Ok
Ala superiore esterno	41.72	0.00	1.54	41.75	Ok
Nerv. orizz. superiore lato sinistro esterno	45.47	0.00	1.54	45.49	Ok
Nerv. vert. lato destro interno zona superiore	48.75	0.00	2.87	48.84	Ok
Nerv. vert. lato sinistro interno zona superiore	58.91	0.00	2.87	58.98	Ok
Verifica formula (4.2.79) (Nodo n. 689, CMB n. 1	١				
, , ,	•		-	FV ₂	VED.
Cordoni Nerv. verticale lato destro esterno	n⊥ -55.52	t⊥ 0.00	τ _{II} 2.87	55.52	VER ₂ Ok
	-55.52 -54.36				Ok Ok
Nerv. vert. lato destro interno zona inferiore		0.00	2.87	54.36	
Nerv. vert. lato sinistro interno zona inferiore	-44.20	0.00	2.87	44.20	Ok
Nerv. verticale lato sinistro esterno	60.08	0.00	2.87	60.08	Ok
Nerv. orizz. inferiore lato destro esterno	-40.91	0.00	1.54	40.91	Ok
Ala inferiore esterno	-31.89	0.00	1.54	31.89	Ok
Nerv. orizz. inferiore lato sinistro esterno	-25.31	0.00	1.54	25.31	Ok
Nerv. orizz. inferiore lato destro interno	-33.63	0.00	1.54	33.63	Ok
Ala inferiore interno lato destro Ala inferiore interno lato sinistro	-29.88	0.00	1.54 1.54	29.88	Ok Ok
Nerv. orizz. inferiore lato sinistro interno	-23.42 -18.03	0.00	1.54 1.54	23.42	Ok Ok
		0.00		18.03	
Nerv. vert. lato destro interno zona centrale	-27.56	0.00	2.87	27.56	Ok

	CASTELLO CARRARESI - INTERVENTO DI RESTAURO E RIQUALIFICAZIONE FUNZIONALE		Elaborato:	APPR_31_ST_RDC			
			File:	APPR_31_ST_RD	C.doc		
	PROGETTO ESECUTIVO RELAZIONE DI CALCOLO		Rev.	•	00	del	Luglio 2018
			Pagina		33	di	182
Anima lato destro		24.39	0.00	2.87		24.39	Ok
Anima lato sinistro	24.39	0.00	2.87		24.39	Ok	
Nerv. vert. lato sinistro interno zona centrale		32.11	0.00	2.87		32.11	Ok
Nerv. orizz. superiore lato destro interno		22.58	0.00	1.54		22.58	Ok
Ala superiore interno lato destro		27.98	0.00	1.54		27.98	Ok
Ala superiore interno lato sinistro		34.43	0.00	1.54		34.43	Ok
Nerv. orizz. superiore lato sinistro interno		38.18	0.00	1.54		38.18	Ok
Nerv. orizz. superiore lato destro esterno		29.87	0.00	1.54		29.87	Ok
Ala superiore esterno		41.72	0.00	1.54		41.72	Ok
Nerv. orizz. superiore lato sinistro esterno		45.47	0.00	1.54		45.47	Ok
Nerv. vert. lato des	48.75	0.00	2.87		48.75	Ok	
Nerv. vert. lato sini	58.91	0.00	2.87		58.91	Ok	

<u>Legenda</u>

 n_{\perp} tensione normale perpendicolare all'asse del cordone

 t_{\perp} tensione tangenziale perpendicolare all'asse del cordone

τ_{||} tensione tangenziale parallela all'asse del cordone

$$FV_1 = (n_{\perp}^2 + t_{\perp}^2 + \tau_{||}^2)^{0.5}$$

$$FV_2 = |n_1| + |t_1|$$

 $VER_i \rightarrow FV_i \leq \beta_i \cdot f_{yk}$ $(\beta_1 \cdot f_{yk} = 192.50 \text{ N/mm}^2)$ $\beta_2 \cdot f_{yk} = 233.75 \text{ N/mm}^2)$

Verifiche a flessione piastra in zona compressa

Sezione parallela a X a filo della colonna (Nodo n. 689, CMB n. 1)

Pressione media a bordo piastra $p_{med} = 9,60 \text{ N/mm}^2$ Carico lineare sbalzo $q_{lin} = 3287,31 \text{ N/mm}$ Lunghezza sbalzo $L_s = 56.2 \text{ mm}$

Modulo di resistenza minimo W_{min} = 185146,0 mm³

Momento resistente $M_{p,Rd} = 48490630,0 \text{ N mm}$ Momento massimo $M_{p,Ed} = 5191387,0 \text{ N mm}$

 $M_{p,Ed} / M_{p,Rd} = 0,107060$ Ok

Sezione parallela a Y a filo della nervatura verticale (Nodo n. 689, CMB n. 1)

Pressione media a bordo piastra $p_{med} = 5,97 \text{ N/mm}^2$ Carico lineare sbalzo $q_{lin} = 1864,13 \text{ N/mm}$ Lunghezza sbalzo $L_s = 56,2 \text{ mm}$

Modulo di resistenza minimo $W_{min} = 180200,9 \text{ mm}^3$

 $\begin{array}{lll} \text{Momento resistente} & \text{M}_{\text{p,Rd}} = & 47195470,0 \text{ N mm} \\ \text{Momento massimo} & \text{M}_{\text{p,Ed}} = & 2943864,0 \text{ N mm} \end{array}$

 $M_{p,Ed} \: / \: M_{p,Rd} \: = 0,062376 \quad Ok$

Verifica del momento di progetto del giunto (Nodo n. 689, CMB n. 1)

Momento resistente del giunto $M_{j,Rd} = 76089850.0 \text{ N mm}$ Momento di progetto $M_{j,Ed} = 44130000.0 \text{ N mm}$

 $M_{i,Ed} / M_{i,Rd} = 0.579972$ Ok

Ancoraggio

Tirafondi con rosette saldate

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	34	di	182

Lunghezza minima tirafondi: 40 diametri (800 mm)

Compressione massima calcestruzzo (Nodo n. 689, CMB n. 1)

 $p_{max} = 11.93 \text{ N/mm}^2 < f_{cd} \text{ Ok}$

Verifica ancoraggio

Si considera la massima resistenza a trazione di progetto dei tirafondi

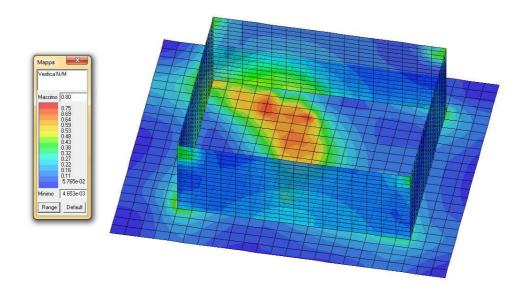
Trazione di progetto dell'ancoraggio $F_{t.an,Ed} = max [F_{t.Rd}] = 94961.6 N$

Si considera il contributo di aderenza fornito dai tirafondi (La = 358 mm)

Resistenza a trazione per aderenza $F_{t,ad,Rd} = L_a \bullet \pi \bullet \varnothing \bullet f_{bd} = 60418.9 \text{ N}$ Trazione di progetto residua $F_{t,re,Ed} = F_{t,ad,Rd} = T_{t,ad,Rd} = 34542.7 \text{ N}$

Verifica della rosetta

Momento di calcolo $M_{Ed} = 501597.2 \text{ N mm}$ Resistenza a flessione $M_{c,Rd} = 527338.8 \text{ N mm}$

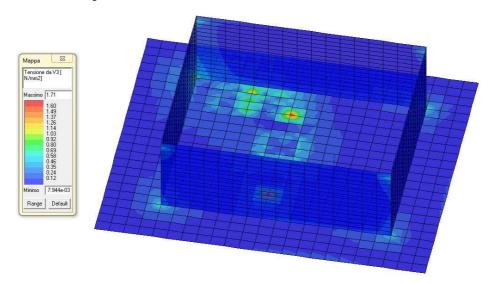

 $M_{Ed} / M_{c,Rd} = 0.951186$ Ok

Compressione sul calcestruzzo

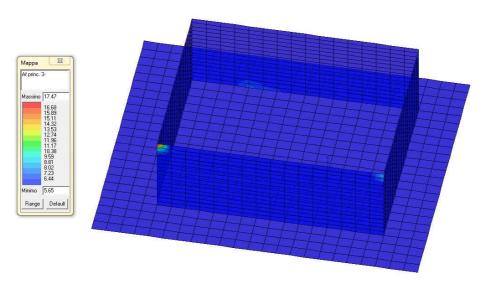
 $p_{cls} = 3.14 \text{ N/mm}^2 < f_{cd} \text{ Ok}$

In accordo con la scheda tecnica il piano di imposta della fondazione è a quota -1.70m dal p.c. e consiste in una platea spessore 45 cm armata con barre Φ12 20x20. Le pareti della fossa invece sono di spessore 40 cm armate anch'esse con barre Φ12 20x20.

Verifica N/M Permette la visualizzazione, mediante mappa di colore, dei valori massimi del rapporto Sd/Su con sollecitazioni ultime proporzionali; il valore del rapporto deve essere minore o uguale a 1 per verifica positiva (Sd = sollecitazione di progetto, Su = sollecitazione ultima);



PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

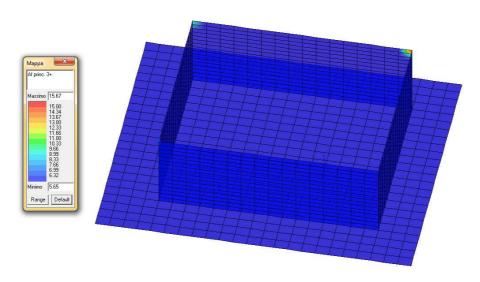

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	35	di	182

Tensione da V3 Consente di visualizzare mediante mappa cromatica la massima tensione tangenziale. In ogni punto viene riportato il valore massimo della tensione derivante dalle azioni T13 e T23. La tensione da V3 è calcolata a partire dall'Azione V (sollecitazione) e indica il taglio per unità di lunghezza divisa per l'altezza utile Hu nel caso di verifica agli SLU

Si confronta il valore di tensione da V3 con v_{min} [4.1.23] del paragrafo 4.1.2.3.5.1 del D.M. 2018. Dove la tensione risulta inferiore al valore v_{min} = 0,46 MPa, non è necessaria specifica armatura a taglio, mentre risultano alte tensione in corrispondenza degli scarichi delle guide laterali della cabina. Tale fenomeno è dovuto al fatto che il carico è applicato in maniera puntuale e concentrata. A livello progettuale si prevede l'utilizzo di un'idonea piastra di appoggio in grado di distribuire gli sforzi.

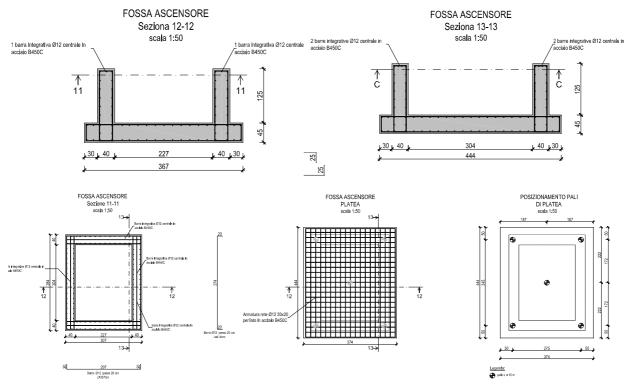
Valori Af 3- Permette la visualizzazione, mediante valori numerici, delle armature principale e secondaria presenti sul lato 3- in cm²/m.

Armatura verticale $A_{s \text{ vert}} = \emptyset 12/20 = 5.65 \text{ cm}^2$ Armatura orizzontale $A_{s \text{ orizz}} = \emptyset 12/20 = 5.65 \text{ cm}^2$



M	业员	4	7-2
		A. A.	

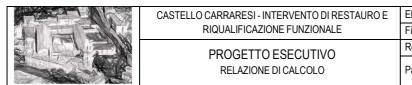
CASTELLO CARRARESI - INTERVENTO DI RESTAURO E
RIQUALIFICAZIONE FUNZIONALE


Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	36	di	182

Valori Af 3+ Come sopra, relativamente al lato 3+;

Armatura verticale $A_{s \text{ vert}} = \emptyset 14/20 = 7.70 \text{ cm}^2$ Armatura orizzontale $A_{s \text{ orizz}} = \emptyset 14/20 = 7.70 \text{ cm}^2$

Come evidenziato dal contour, la verifica è soddisfatta ad eccezione delle zone soggette a sforzi concentrati. In particolare si notano degli incrementi di tensioni in corrispondenza dello scarico puntuale dei pilastri. In tali zone sono però presenti specifiche armature integrative longitudinali. Si inserisce armatura integrativa orizzontale pari a un \varnothing 12 all'estremità del setto.



PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	37	di	182

Il castelletto è stato progettato totalmente indipendente dal fabbricato ma son previsti tre ancoraggi fissi al fabbricato posizionati alla quota dei due sbarchi e sul cordolo sommitale, in modo da trasmettere eventuali vibrazioni orizzontali della macchina. La platea di fondazione posa su 5 micropali posizionati alle estremità e centralmente al pistone della macchina. Per la verifica ed il calcolo analitico si faccia riferimento alla Relazione Geotecnica. Lo sforzo trasmesso a ciascun palo è pari a 309 kN < 315,39 kN

Ø	L	Portata in compressione	Portata in trazione		
[mm]	[m]	[kN]	[kN]		
200	15,00	315,39	315,17		

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	38	di	182

8 VERIFICA NUOVO CASTELLETTO METALLICO PER ASCENSORE INTERNO

È prevista la realizzazione di un castelletto metallico propedeutico all'installazione di un impianto di sollevamento interno che collega i livelli del fabbricato oggetto di intervento.

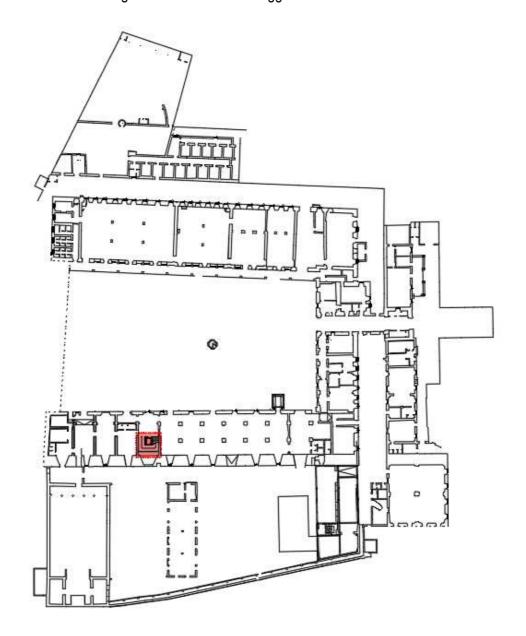
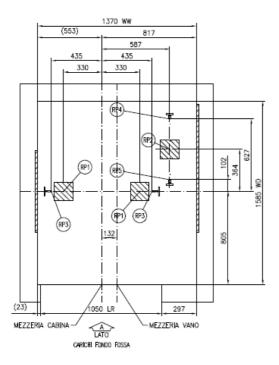
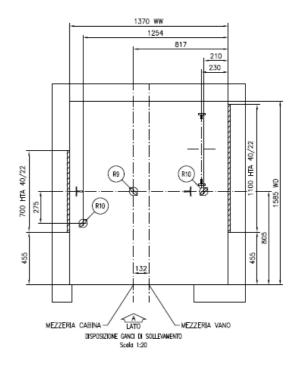


Figura 6: Individuazione ascensore interno

Le verifiche statiche ed il dimensionamento della struttura metallica di supporto, nonché della fossa in calcestruzzo, è stato eseguito adottando i carichi e le forze riportati nella scheda tecnica del macchinario, e di seguito individuati. Per i carichi di neve e vento si rimanda allo specifico capitolo riguardante le azioni sulle strutture.

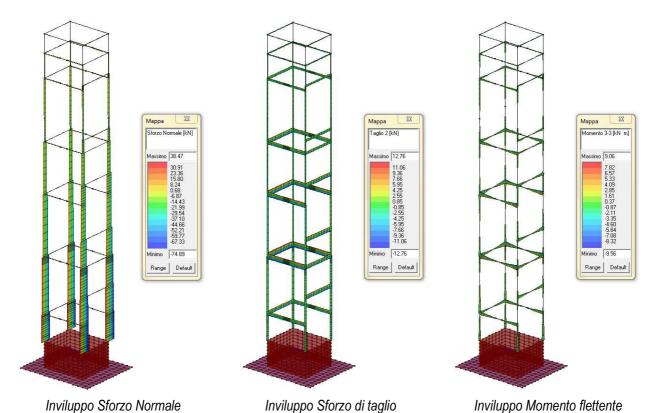



PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

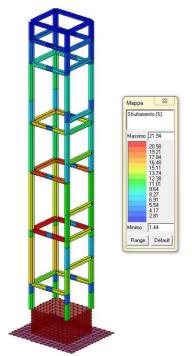
Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	39	di	182

REAZIONI SU FISSAGGI STAFFE GUIDE (max.)				
Numero/i impianto	T-0002288119_V			
	Carico	Valore (kN)		
	P top	1.58		
top \	S top	4.38		
P top T top	T top	1.77		
- 1 T	P top-1	3.39		
top-1 -1	S top-1	4.34		
P top-1 T top-1	T top-1	4.15		
	P rest	2.46		
rest	S rest	1.59		
P rest T rest	T rest	2.61		

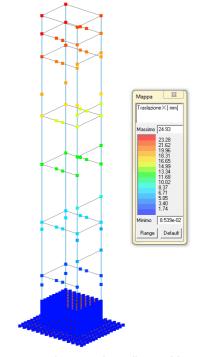
MASSIMI CARICHI DI REAZIONE SUL FONDO FOSSA				
Numero/i impianto	10150			
Carico	Valore (kN)	Valore (kN)	Valore (kN)	Valore (kN)
RP1	22.3	_	ı	-
RP2	36.7	-	-	-
RP3	51.8	_	-	-
RP4	39.9	_	-	-
RP5	25.6	-	-	-
RP6	-	_	-	_


Qualora si provvedesse in fase di esecuzione lavori all'installazione di un macchinario diverso in termini di dimensioni, schema di carico ed entità dei carichi trasmessi sia alla struttura metallica che alle fondazioni, le presenti opere strutturali dovranno essere verificate ed eventualmente riprogettate.

Si riportano di seguito le verifiche eseguite agli SLU sul castelletto metallico soggetto alle azioni delle guide della cabina e alle azioni di vento, neve e sisma.



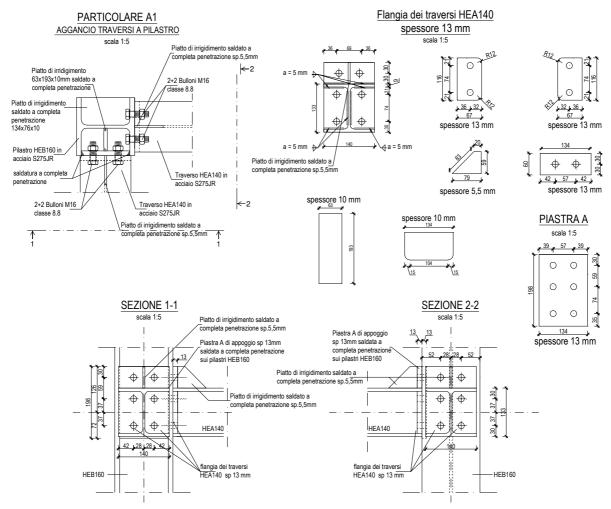
PROGETTO ESECUTIVO RELAZIONE DI CALCOLO


Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	40	di	182

La struttura così progettata raggiunge uno sfruttamento percentuale pari a circa 22% e uno spostamento massimo alla combinazione SLD nella direzione più sollecitata pari a 24,9 mm massimo, inferiore dello spostamento massimo consentito pari a 0,005h= 62 mm.

Sfruttamento massimo percentuale alla combinazione SLU

Spostamento massimo assoluto alla combinazione SLD dr < 0.005 h



PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	41	di	182

I traversi son collegati ai pilastri mediante flange imbullonate di cui si segue la verifica:

Sollecitazioni nella sezione d'attacco dell'elemento:

Nodo.CMB	V2 [N]	V3 [N]	N [N]	M2 [N mm]	M3 [N mm]	T [N mm]
44.15	-13684.0	494.2	-16.9	-370862.0	9645280.0	5351.0
44.18	15491.4	-494.2	2.9	370685.0	-9900688.0	-5351.0

Calcolo resistenze

Resistenza a trazione dei bulloni	$F_{tb,Rd} = 0.9 \cdot f_{tb} \cdot A_{res} / \gamma_{M2} =$	90333.1 N
Resistenza a punzonamento flangia	$B_{pf,Rd} = 0.6 \cdot \pi \cdot d_m \cdot t_f \cdot f_{tk} / \gamma_{M2} =$	202308.5 N
Resistenza a punzonamento ala passante	$B_{pa,Rd} = 0.6 \bullet \pi \bullet d_m \bullet t_a \bullet f_{tk} / \gamma_{M2} =$	202308.5 N

Bull.	F _{f,Rd} [N]	$F_{t,Rd}[N]$
1	32183.7	32183.7
2	32183.7	32183.7
3	31201.7	31201.7
4	32183.7	32183.7
5	32183.7	32183.7
6	31201.7	31201.7

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	42	di	182

<u>Legenda</u>

 $F_{f,Rd} = M_{res,m} / (B_m \cdot R_m)$ resistenza a flessione flangia $F_{t,Rd} = min [F_{tb,Rd}, B_{pf,Rd}, B_{pa,Rd}, F_{f,Rd}]$ resistenza a trazione di progetto

 $F_{vb,Rd} = 0.6 \cdot f_{tb} \cdot A_{res} / \gamma_{M2} =$

60222.1 N

Bull.	F _{bf,x,Rd} [N]	F _{ba,x,Rd} [N]	$F_{v,x,Rd}$ [N]	F _{bf,y,Rd} [N]	F _{ba,y,Rd} [N]	$F_{v,y,Rd}[N]$
1	89440.0	124514.5	60222.1	106977.3	178880.0	60222.1
2	89440.0	124514.5	60222.1	138860.0	138860.0	60222.1
3	72116.0	124514.5	60222.1	79128.1	178880.0	60222.1
4	89440.0	124514.5	60222.1	106977.3	178880.0	60222.1
5	89440.0	124514.5	60222.1	138860.0	138860.0	60222.1
6	72116.0	124514.5	60222.1	79128.1	178880.0	60222.1

Legenda

 $F_{bf,x,Rd} = k \cdot \alpha \cdot f_{tk} \cdot \varnothing \cdot f_f / \gamma_{M2}$ resistenza a rifollamento flangia in direzione x

 $F_{ba,x,Rd} = k \cdot \alpha \cdot f_{tk} \cdot \emptyset \cdot f_{a} / \gamma_{M2}$ resistenza a rifollamento ala passante in direzione x

 $F_{v,x,Rd} = min \left[\ F_{vb,Rd} \ , \ F_{bf,x,Rd} \ , \ F_{ba,x,Rd} \ \right] \ resistenza \ a \ taglio \ di \ progetto \ in \ direzione \ x$

 $F_{bf,y,Rd} = k \, \bullet \, \alpha \, \bullet \, f_{tk} \, \bullet \, \varnothing \, \bullet \, t_f \, / \, \gamma_{M2} \ \, \text{resistenza a rifollamento flangia in direzione y}$

 $F_{ba,y,Rd} = k \cdot \alpha \cdot f_{tk} \cdot \emptyset \cdot t_a / \gamma_{M2}$ resistenza a rifollamento ala passante in direzione y

 $F_{v,y,Rd} = min [F_{vb,Rd}, F_{bf,y,Rd}, F_{ba,y,Rd}]$ resistenza a taglio di progetto in direzione y

Verifiche sui bulloni

<u>1-Tagli</u>	1-Taglio e trazione (Nodo n. 44, CMB n. 15)								
Bull.	X [mm]	Y [mm]	$F_{v,Ed}[N]$	$F_{v,Rd}$ [N]	F _{t,Ed} [N	١]	$F_{t,Rd}$ [N]	FV ₁	VER
1	44.50	-36.00	2291.3	60222.1	28996.	1	32183.7	0.681589	Ok
2	44.50	36.00	2290.8	60222.1	11257.	8	32183.7	0.287895	Ok
3	44.50	88.34	2290.4	60222.1	0.	0	31201.7	0.038033	Ok
4	-44.50	-36.00	2274.0	60222.1	29740.	6	32183.7	0.697823	Ok
5	-44.50	36.00	2273.4	60222.1	12002.	2	32183.7	0.304129	Ok
6	-44.50	88.34	2273.1	60222.1	0.	0	31201.7	0.037745	Ok
2-Trazi		o n. 44, CME	3 n. 15)						
Bull.	X [mm]	Y [mm]	$F_{t,Ed}[N]$	$F_{t,Rd}$ [N]	FV_2	VER			
1	44.50	-36.00	28996.1	32183.7	0.900958	Ok			
2	44.50	36.00	11257.8	32183.7	0.349799	Ok			
3	44.50	88.34	0.0	31201.7	0.000000	Ok			
4	-44.50	-36.00	29740.6	32183.7	0.924088	Ok			
5	-44.50	36.00	12002.2	32183.7	0.372929	Ok			
6	-44.50	88.34	0.0	31201.7	0.000000	Ok			

Legenda

 $F_{v,Ed}$ forza di taglio agente sul bullone

F_{v,Rd} resistenza a taglio di progetto del bullone

F_{t,Ed} forza di trazione agente sul bullone

Ft,Rd resistenza a trazione di progetto del bullone

 $FV_1 = F_{v,Ed} / F_{v,Rd} + F_{t,Ed} / (1.4 \cdot F_{t,Rd})$

 $FV_2 = F_{t,Ed} \: / \: F_{t,Rd}$

 $VER \rightarrow FV_i \leq 1$

CASTELLO CARRARESI - INTERVENTO DI RESTAURO E
RIQUALIFICAZIONE FUNZIONALE

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	43	di	182

Verifiche sulle saldature profilo-flangia

Si considera la sezione di gola (avente altezza a = s_c / $2^{0.5}$ = 3.536) in posizione ribaltata: vengono considerate positive le tensioni normali di trazione e le tensioni tangenziali agenti verso destra e verso il basso. Tutte le tensioni sono espresse in N/mm².

Verifica formula (4.2.78) (Nodo n. 44, CMB n. 18	3)				
Cordoni	n_\perp	t_{\perp}	$ au_{ }$	FV_1	VER ₁
Ala inferiore interno lato destro	-71.07	0.00	-0.39	71.07	Ok
Ala inferiore interno lato sinistro	-84.11	0.00	-0.39	84.11	Ok
Anima lato destro	60.00	0.00	16.67	62.27	Ok
Anima lato sinistro	60.00	0.00	16.67	62.27	Ok
Ala superiore interno lato destro	84.11	0.00	-0.39	84.11	Ok
Ala superiore interno lato sinistro	71.07	0.00	-0.39	71.08	Ok
Ala superiore esterno	89.04	0.00	-0.39	89.04	Ok
Nervatura superiore lato destro	144.65	0.00	16.67	145.60	Ok
Nervatura superiore lato sinistro	144.65	0.00	16.67	145.60	Ok
Verifica formula (4.2.79) (Nodo n. 44, CMB n. 18	3)				
Verifica formula (4.2.79) (Nodo n. 44, CMB n. 18	3) n ₁	t_1	$ au_{ll}$	FV ₂	VER ₂
• • • • • • • • • • • • • • • • • • • •	,	t⊥ 0.00	τ -0.39	FV ₂ 71.07	VER ₂ Ok
Cordoni	, n⊥		"		
Cordoni Ala inferiore interno lato destro	, n⊥ -71.07	0.00	-0.39	71.07	Ok
Cordoni Ala inferiore interno lato destro Ala inferiore interno lato sinistro	n⊥ -71.07 -84.11	0.00 0.00	-0.39 -0.39	71.07 84.11	Ok Ok
Cordoni Ala inferiore interno lato destro Ala inferiore interno lato sinistro Anima lato destro	n⊥ -71.07 -84.11 60.00	0.00 0.00 0.00	-0.39 -0.39 16.67	71.07 84.11 60.00	Ok Ok Ok
Cordoni Ala inferiore interno lato destro Ala inferiore interno lato sinistro Anima lato destro Anima lato sinistro	n⊥ -71.07 -84.11 60.00 60.00	0.00 0.00 0.00 0.00	-0.39 -0.39 16.67 16.67	71.07 84.11 60.00 60.00	Ok Ok Ok Ok
Cordoni Ala inferiore interno lato destro Ala inferiore interno lato sinistro Anima lato destro Anima lato sinistro Ala superiore interno lato destro	n_{\perp} -71.07 -84.11 60.00 60.00 84.11	0.00 0.00 0.00 0.00 0.00	-0.39 -0.39 16.67 16.67 -0.39	71.07 84.11 60.00 60.00 84.11	Ok Ok Ok Ok
Cordoni Ala inferiore interno lato destro Ala inferiore interno lato sinistro Anima lato destro Anima lato sinistro Ala superiore interno lato destro Ala superiore interno lato sinistro	n_{\perp} -71.07 -84.11 60.00 60.00 84.11 71.07	0.00 0.00 0.00 0.00 0.00 0.00	-0.39 -0.39 16.67 16.67 -0.39 -0.39	71.07 84.11 60.00 60.00 84.11 71.07	Ok Ok Ok Ok Ok

<u>Legenda</u>

n⊥ tensione normale perpendicolare all'asse del cordone

 t_{\perp} tensione tangenziale perpendicolare all'asse del cordone

τ_{II} tensione tangenziale parallela all'asse del cordone

$$FV_1 = (n_{\perp}^2 + t_{\perp}^2 + \tau_{||}^2)^{0.5}$$

$$\mathsf{FV}_2 = |\mathsf{n}_\perp| + |\mathsf{t}_\perp|$$

 $VER_i \rightarrow FV_i \leq \beta_i \cdot f_{yk}$ $(\beta_1 \cdot f_{yk} = 192.50 \text{ N/mm}^2)$ $\beta_2 \cdot f_{yk} = 233.75 \text{ N/mm}^2)$

Verifica del momento di progetto del giunto (Nodo n. 44, CMB n. 15)

 $\begin{array}{ll} \text{Momento resistente del giunto} & \text{M}_{j,\text{Rd}} = & 12489740.0 \text{ N mm} \\ \text{Momento di progetto} & \text{M}_{j,\text{Ed}} = & 9645280.0 \text{ N mm} \end{array}$

 $M_{j,Ed} \: / \: M_{j,Rd} \: = 0.772257 \quad Ok$

Flangia di base:

Sollecitazioni:

Nodo.CMB V2 [N] V3 [N] N [N] M2 [N mm] M3 [N mm] T [N mm] 367.1 -8705.9 -3984.5 9065.8 3067000.0 12440000.0 -16694.0

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

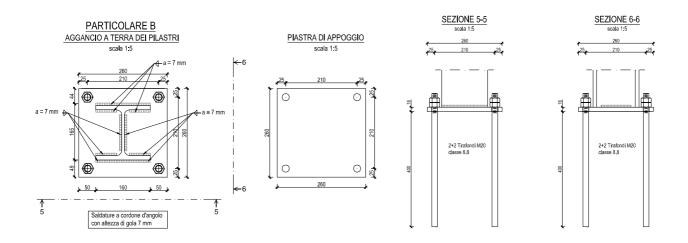
Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	44	di	182

Calcolo resistenze

Resistenza a trazione dei bulloni	$F_{tb,Rd} = 0.9 \cdot f_{tb} \cdot A_{res} / \gamma_{M2} =$	141145.5 N
Resistenza a punzonamento flangia	$B_{pf,Rd} = 0.6 \cdot \pi \cdot d_m \cdot t_f \cdot f_{tk} / \gamma_{M2} =$	311243.9 N

Bull.	F _{f,Rd} [N]	$F_{t,Rd}[N]$
1	42886.7	42886.7
2	48668.3	48668.3
3	42886.7	42886.7
4	48668.3	48668.3

Legenda


 $F_{f,Rd} = M_{res,m} / (B_m \cdot R_m)$ resistenza a flessione flangia

 $F_{t,Rd} = min [F_{tb,Rd}, B_{pf,Rd}, F_{f,Rd}]$ resistenza a trazione di progetto

Resistenza a	taglio dei bulloni	$F_{vb,R}$	94097.0 N		
Bull.	F _{bf,x,Rd} [N]	$F_{v,x,Rd}$ [N]	F _{bf,y,Rd} [N]	$F_{v,y,Rd}[N]$	
1	73093.1	73093.1	73093.1	73093.1	
2	110080.0	94097.0	136904.5	94097.0	
3	73093.1	73093.1	73093.1	73093.1	
4	110080.0	94097.0	136904.5	94097.0	

<u>Legenda</u>

$$\begin{split} F_{bf,x,Rd} &= k \bullet \alpha \bullet f_{tk} \bullet \varnothing \bullet t_f \ / \ \gamma_{M2} \ \ \text{resistenza a rifollamento flangia in direzione x} \\ F_{v,x,Rd} &= min \left[\ F_{vb,Rd} \ , \ F_{bf,x,Rd} \ \right] \ \ \text{resistenza a taglio di progetto in direzione x} \\ F_{bf,y,Rd} &= k \bullet \alpha \bullet f_{tk} \bullet \varnothing \bullet t_f \ / \ \gamma_{M2} \ \ \text{resistenza a rifollamento flangia in direzione y} \\ F_{v,y,Rd} &= min \left[\ F_{vb,Rd} \ , \ F_{bf,y,Rd} \ \right] \ \ \text{resistenza a taglio di progetto in direzione y} \end{split}$$

Verifiche sui bulloni

1-Tagli	o e trazione	<u>e</u> (Nodo n. 3	367, CMB n. 1)					
Bull.	X [mm]	Y [mm]	$F_{v,Ed}[N]$	$F_{v,Rd}[N]$	$F_{t,Ed}[N]$	$F_{t,Rd}[N]$	FV_1	VER
1	101.00	-109.00	2383.0	73093.1	37769.3	42886.7	0.661657	Ok
2	101.00	87.00	2365.7	94097.0	0.0	48668.3	0.025141	Ok
3	-101.00	-109.00	2421.6	73093.1	25524.8	42886.7	0.458250	Ok
4	-101.00	87.00	2404.5	94097.0	0.0	48668.3	0.025554	Ok

CASTELLO CARRARESI - INTERVENTO DI RESTAURO E	Elaborato:	APPR_31_ST_RDC		
RIQUALIFICAZIONE FUNZIONALE	File:	APPR_31_ST_RDC.doc		
PROGETTO ESECUTIVO	Rev.	00	del	Luglio 2018
RELAZIONE DI CALCOLO	Pagina	45	di	182

2-Trazio	one (Node	o n. 367, CMI	B n. 1)			
Bull.	X [mm]	Y [mm]	F _{t,Ed} [N]	$F_{t,Rd}[N]$	FV_2	VER
1	101.00	-109.00	37769.3	42886.7	0.880676	Ok
2	101.00	87.00	0.0	48668.3	0.000000	Ok
3	-101.00	-109.00	25524.8	42886.7	0.595168	Ok
4	-101.00	87.00	0.0	48668.3	0.000000	Ok

Legenda

F_{v,Ed} forza di taglio agente sul bullone

F_{v,Rd} resistenza a taglio di progetto del bullone

F_{t,Ed} forza di trazione agente sul bullone

Ft,Rd resistenza a trazione di progetto del bullone

 $FV_1 = F_{v,Ed} / F_{v,Rd} + F_{t,Ed} / (1.4 \cdot F_{t,Rd})$

 $\begin{aligned} FV_2 &= F_{t,Ed} \: / \: F_{t,Rd} \\ VER \: \to \: FV_i \leq 1 \end{aligned}$

Verifiche sulle saldature profilo-flangia

Si considera la sezione di gola (avente altezza a = s_c / $2^{0.5}$ = 4.950) in posizione ribaltata: vengono considerate positive le tensioni normali di trazione e le tensioni tangenziali agenti verso destra e verso il basso. Tutte le tensioni sono espresse in N/mm².

Verifica formula (4.2.78) (Nodo n. 367, CMB)	n. 1)				
Cordoni	n_\perp	t_\perp	$ au_{ }$	FV ₁	VER ₁
Ala inferiore esterno	63.68	0.00	-1.43	63.69	Ok
Ala inferiore interno lato destro	86.89	0.00	-1.43	86.90	Ok
Ala inferiore interno lato sinistro	41.65	0.00	-1.43	41.68	Ok
Anima lato destro	41.02	0.00	-8.46	41.89	Ok
Anima lato sinistro	41.02	0.00	-8.46	41.89	Ok
Ala superiore interno lato destro	-36.91	0.00	-1.43	36.94	Ok
Ala superiore interno lato sinistro	-82.14	0.00	-1.43	82.15	Ok
Ala superiore esterno	-95.48	0.00	-1.43	95.49	Ok
Verifica formula (4.2.79) (Nodo n. 367, CMB I	n. 1)				
Verifica formula (4.2.79) (Nodo n. 367, CMB l Cordoni	n. 1) n⊥	t⊥	$ au_{ }$	FV_2	VER ₂
· · · · · · · · · · · · · · · · · · ·	•	$\begin{array}{c} t_{\perp} \\ 0.00 \end{array}$	τ -1.43	FV ₂ 63.68	VER ₂ Ok
Cordoni	n⊥	-			
Cordoni Ala inferiore esterno	n _⊥ 63.68	0.00	-1.43	63.68	Ok
Cordoni Ala inferiore esterno Ala inferiore interno lato destro	n⊥ 63.68 86.89	0.00 0.00	-1.43 -1.43	63.68 86.89	Ok Ok
Cordoni Ala inferiore esterno Ala inferiore interno lato destro Ala inferiore interno lato sinistro	n⊥ 63.68 86.89 41.65	0.00 0.00 0.00	-1.43 -1.43 -1.43	63.68 86.89 41.65	Ok Ok Ok
Cordoni Ala inferiore esterno Ala inferiore interno lato destro Ala inferiore interno lato sinistro Anima lato destro	n⊥ 63.68 86.89 41.65 41.02	0.00 0.00 0.00 0.00	-1.43 -1.43 -1.43 -8.46	63.68 86.89 41.65 41.02	Ok Ok Ok Ok
Cordoni Ala inferiore esterno Ala inferiore interno lato destro Ala inferiore interno lato sinistro Anima lato destro Anima lato sinistro	n⊥ 63.68 86.89 41.65 41.02 41.02	0.00 0.00 0.00 0.00 0.00	-1.43 -1.43 -1.43 -8.46 -8.46	63.68 86.89 41.65 41.02 41.02	Ok Ok Ok Ok

Legenda

- n_{\perp} tensione normale perpendicolare all'asse del cordone
- t⊥ tensione tangenziale perpendicolare all'asse del cordone
- τ_{||} tensione tangenziale parallela all'asse del cordone

$$FV_1 = (n_{\perp}^2 + t_{\perp}^2 + \tau_{\parallel}^2)^{0.5}$$

 $\mathsf{FV}_2 = |\mathsf{n}_\perp| + |\mathsf{t}_\perp|$

 $VER_i \rightarrow FV_i \leq \beta_i \bullet f_{yk} \quad (\beta_1 \bullet f_{yk} = 192.50 \text{ N/mm}^2 \quad \beta_2 \bullet f_{yk} = 233.75 \text{ N/mm}^2)$

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	46	di	182

Verifiche a flessione piastra in zona compressa

Sezione parallela a X a filo della colonna (Nodo n. 367, CMB n. 1)

Pressione media a bordo piastra $p_{med} = 4,76 \text{ N/mm}^2$ Carico lineare sbalzo $q_{lin} = 1200,88 \text{ N/mm}$ Lunghezza sbalzo $L_s = 54,2 \text{ mm}$

Modulo di resistenza minimo $W_{min} = 10769,1 \text{ mm}^3$

Momento resistente $M_{p,Rd} = 2820470,0 \text{ N mm}$ Momento massimo $M_{p,Ed} = 1763871,0 \text{ N mm}$

 $M_{p,Ed} / M_{p,Rd} = 0.625382$ Ok

Sezione parallela a Y a filo della colonna (Nodo n. 367, CMB n. 1)

Pressione media a bordo piastra $p_{med} = 3,42 \text{ N/mm}^2$ Carico lineare sbalzo $q_{lin} = 917,80 \text{ N/mm}$ Lunghezza sbalzo $L_s = 46,2 \text{ mm}$ Modulo di resistenza minimo $W_{min} = 11451,7 \text{ mm}^3$

 $\begin{array}{lll} \text{Momento resistente} & \qquad & M_{p,Rd} = & 2999264,0 \text{ N mm} \\ \text{Momento massimo} & \qquad & M_{p,Ed} = & 979492,9 \text{ N mm} \end{array}$

 $M_{p,Ed} / M_{p,Rd} = 0.326578$ Ok

Verifica del momento di progetto del giunto (Nodo n. 367, CMB n. 1)

Momento resistente del giunto $M_{j,Rd} = 16911060.0 \text{ N mm}$ Momento di progetto $M_{j,Ed} = 12440000.0 \text{ N mm}$

 $M_{j,Ed} / M_{j,Rd} = 0.735613$ Ok

Ancoraggio

Tirafondi ad aderenza

Lunghezza tirafondi $L_t = 400 \text{ mm}$

Lunghezza minima tirafondi: 40 diametri (800 mm)

Calcestruzzo

Resistenza cubica caratteristica a compressione	R _{ck} =	30.00 N/mm ²
Resistenza cilindrica caratteristica a compressione	$f_{ck} = 0.83 \cdot R_{ck} =$	24.90 N/mm ²
Resistenza di calcolo a compressione	$f_{cd} = \alpha_{cc} \cdot f_{ck} / \gamma_{C} =$	14.11 N/mm ²
Resistenza caratteristica a trazione	$f_{ctk} = 0.7 \cdot 0.30 \cdot f_{ck}^{2/3} =$	1.79 N/mm ²
Resistenza tangenziale di aderenza di calcolo	$f_{bd} = 2.25 \cdot \eta \cdot f_{ctk} / \gamma_C =$	2.69 N/mm ²

Compressione massima calcestruzzo (Nodo n. 367, CMB n. 1)

 $p_{max} = 6.84 \text{ N/mm}^2 < f_{cd} \text{ Ok}$

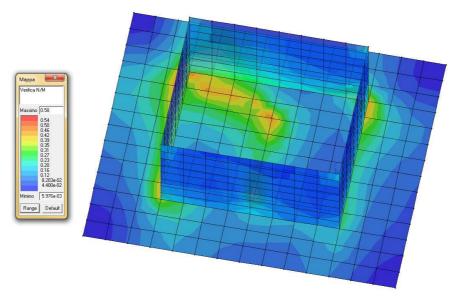
Verifica ancoraggio

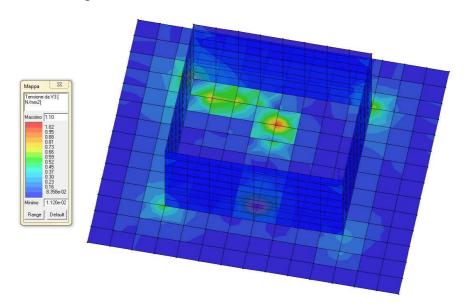
Si considera la massima resistenza a trazione di progetto dei tirafondi

Trazione di progetto dell'ancoraggio $F_{t,an,Ed} = max [F_{t,Rd}] = 48668.3 N$ Resistenza a trazione per aderenza $F_{t,ad,Rd} = L_t \cdot \pi \cdot \varnothing \cdot f_{bd} = 67507.2 N$

 $F_{t,ad,Rd} > F_{t,an,Ed} \quad Ok$

In accordo con la scheda tecnica il piano di imposta della fondazione è a quota -1.05m dal p.c. e consiste in una platea spessore 45 cm nella fossa armata con barre Φ12 20x20. Le pareti della fossa invece son di spessore 40 cm armate anch'esse con barre Φ12 20x20.

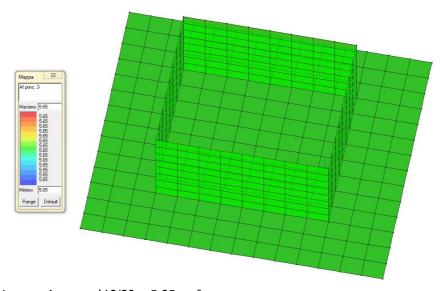



PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

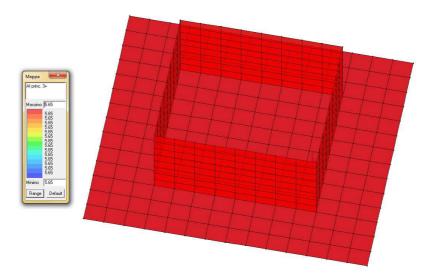
Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	47	di	182

Verifica N/M Permette la visualizzazione, mediante mappa di colore, dei valori massimi del rapporto Sd/Su con sollecitazioni ultime proporzionali; il valore del rapporto deve essere minore o uguale a 1 per verifica positiva (Sd = sollecitazione di progetto, Su = sollecitazione ultima);

Tensione da V3 Consente di visualizzare mediante mappa cromatica la massima tensione tangenziale. In ogni punto viene riportato il valore massimo della tensione derivante dalle azioni T13 e T23. La tensione da V3 è calcolata a partire dall'Azione V (sollecitazione) e indica il taglio per unità di lunghezza divisa per l'altezza utile Hu nel caso di verifica agli SLU


Si confronta ora il valore di tensione da V3 con v_{min} [4.1.23] del paragrafo 4.1.2.3.5.1 del D.M. 2018. Dove la tensione risulta inferiore al valore v_{min} = 0,46 MPa, non è necessaria specifica armatura a taglio, mentre risultano alte tensione in corrispondenza degli angoli della mesh del modello di calcolo e degli scarichi delle nuove strutture metalliche. Si prevedono quindi idonee piastre di appoggio in grado di distribuire efficacemente gli sforzi.

CASTELLO CARRARESI - INTERVENTO DI RESTAURO E
RIQUALIFICAZIONE FUNZIONALE


Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	48	di	182

Valori Af 3- Permette la visualizzazione, mediante valori numerici, delle armature principale e secondaria presenti sul lato 3- in cm²/m.

Armatura verticale Armatura orizzontale $A_{s \text{ vert}} = \emptyset 12/20 = 5.65 \text{ cm}^2$ $A_{s \text{ orizz}} = \emptyset 12/20 = 5.65 \text{ cm}^2$

Valori Af 3+ Come sopra, relativamente al lato 3+;

Armatura verticale Armatura orizzontale $A_{s \text{ vert}} = \emptyset 12/20 = 5.65 \text{ cm}^2$ $A_{s \text{ orizz}} = \emptyset 12/20 = 5.65 \text{ cm}^2$

Come evidenziato dal contour, la verifica è soddisfatta.

CASTELLO CARRARESI - INTERVENTO DI RESTAURO E
RIQUALIFICAZIONE FUNZIONALE

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	49	di	182

9 NUOVA SCALA INTERNA

All'interno del fabbricato, nell'ala sud dello stesso, è prevista la realizzazione di una scala con struttura metallica che da piano terra conduce al piano secondo dell'edificio, individuata nella seguente planimetria.

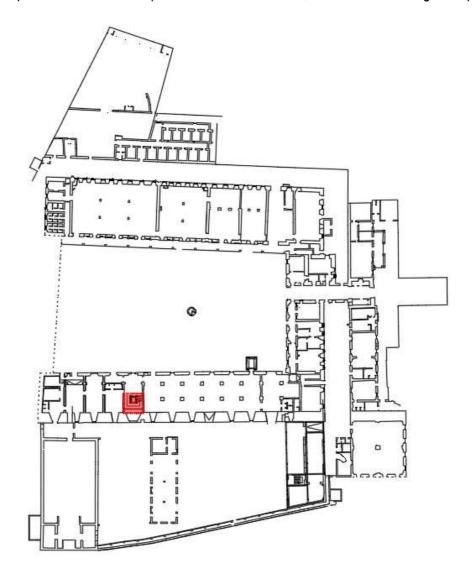


Figura 7: Individuazione scala interna

Di seguito viene riportato il dimensionamento della rampa realizzata attraverso profili metallici piatti 320mm x 15 mm in acciaio S275J0 (Fe 430), considerando dei gradini in acciaio, un parapetto metallico e un carico accidentale pari a 4,0 KN/mq. La struttura non è a ridosso delle murature storiche ma si sostiene grazie a un telaio metallico retrostante costituito da profili HEA 120 controventati con barre in acciaio Φ16. Si esegue il calcolo inserendo nel modello i carichi dovuti al carico parapetto e al carico accidentale dell'affollamento. Si riportano in via grafica i parametri della sollecitazioni calcolati nelle combinazioni Stati Limite Ultimi secondo NTC-2018.

CASTELLO CARRARESI - INTERVENTO DI RESTAURO E
RIQUALIFICAZIONE FUNZIONALE

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	50	di	182

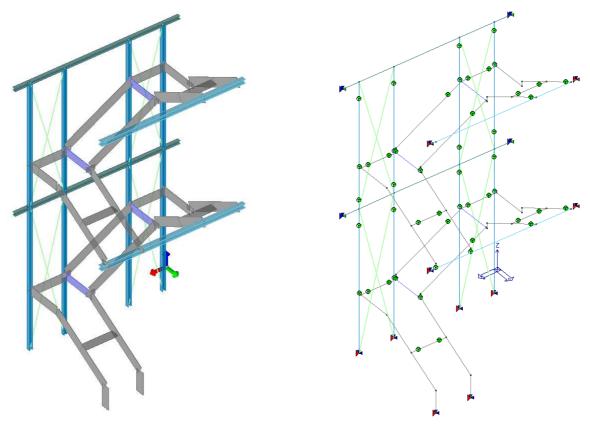


Figura 8: Modello di calcolo

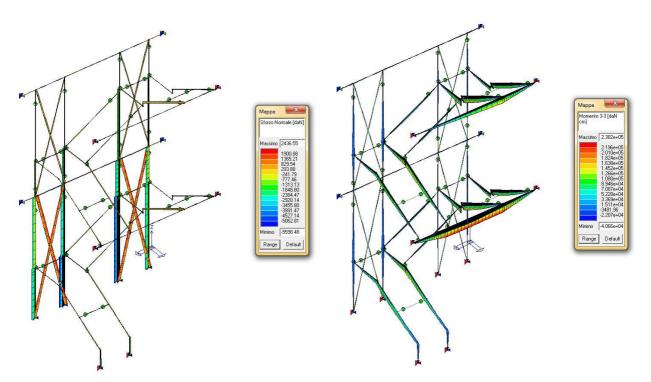


Figura 9: Diagramma dello Sforzo Normale

Figura 10: Diagramma del Momento flettente

	PROGETTO ESECUTIVO	Elaborato:	APPR_31_ST_RDC
		File:	APPR_31_ST_RDC.doc
		Rev.	00 del Luglio 2018
		Pagina	51 di 182

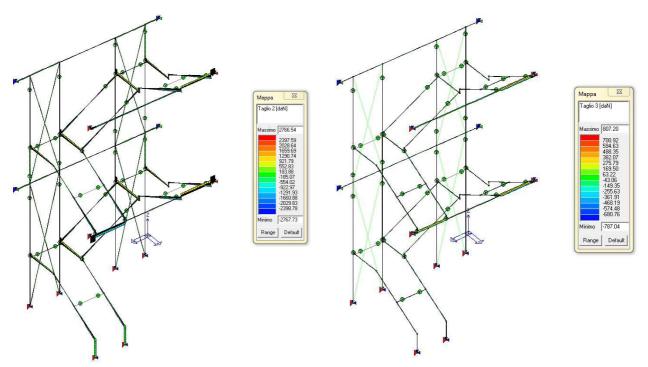


Figura 11: Diagramma dello sforzo di taglio

Figura 12: Diagramma del momento torcente

Il programma esegue le verifiche di resistenza e stabilità. Si riportano i risultati in via grafica, in termini di sfruttamento percentuale della struttura.

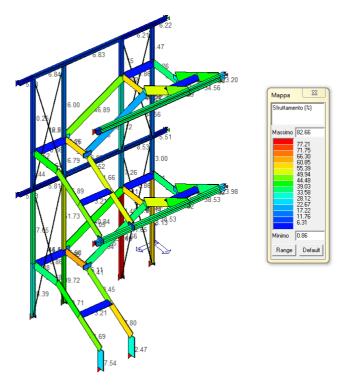


Figura 13: Sfruttamento percentuale massimo 83%

CASTELLO CARRARESI - INTERVENTO DI RESTAURO E	
RIQUALIFICAZIONE FUNZIONALE	

Elaborato:	APPR_31_ST_RDC				
File:	APPR_31_ST_RDC.doc				
Rev.	00	del	Luglio 2018		
Pagina	52	di	182		

Nella combinazione SLE si verifica che la deformazione ultima della struttura sia inferiore ai limiti ammessi da normativa.

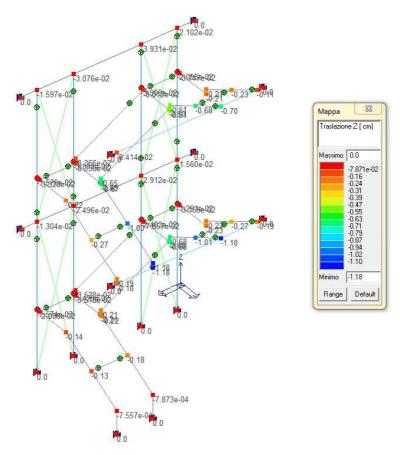


Figura 14: Deformazione verticale—spostamento verticale di 1,01 cm < L/250 = 1,62cm (cosciale) e 1,18 cm < L/250 = 1.92cm (trave sbarco)

9.1 VERIFICA DEL PARAPETTO

Il parapetto della nuova scala è previsto con una struttura metallica realizzata con profili cavi in acciaio S275J0, la struttura viene poi rivestita come previsto dal progetto architettonico. La struttura è composta dai seguenti elementi:

- Montanti di partenza e di sbarco delle rampe 80x40 spessore 4 mm;
- Montanti intermedi 40x40 spessore 4 mm;
- Traverso superiore 40x80 spessore 4 mm;
- Traverso inferiore 40x40 spessore 4 mm;

La scala viene verificata nella varie configurazioni di carico delle rampe, prevedendo una spinta orizzontale pari a 2 kN/m applicati alla quota superiore del parapetto.

Il programma esegue le verifiche di resistenza e stabilità. Si riportano i risultati in via grafica, in termini di sfruttamento percentuale della struttura.

		Elaborato:	APPR_31_ST_RDC		
		File:	APPR_31_ST_RDC.doc		
	PROGETTO ESECUTIVO	Rev.	00	del	Luglio 2018
	RELAZIONE DI CALCOLO	Pagina	53	di	182

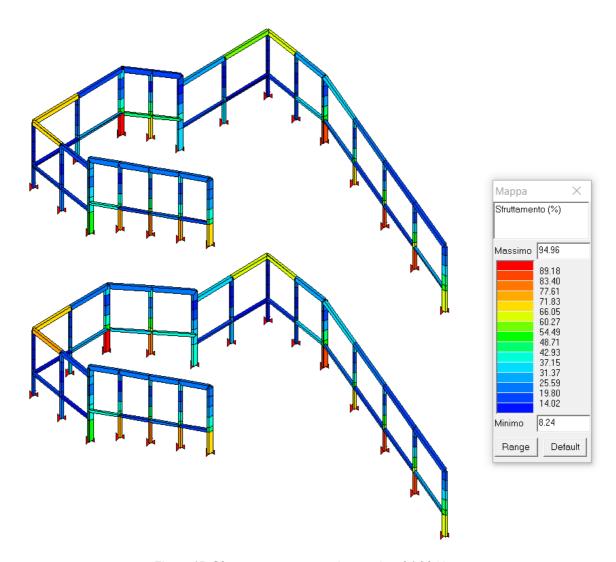


Figura 15: Sfruttamento percentuale massimo 94,96 %

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	54	di	182

10 VERIFICA DELLA COPERTURA ESISTENTE - VALUTAZIONE DELL'INDICE DI RESISTENZA AL FUOCO

La valutazione dell'indice di resistenza al fuoco per la copertura lignea del Castello Carrarese Ala Sud è stata condotta seguendo la metodologia proposta dalla norma UNI EN 19995-1-2 – Eurocodice 2 (Progettazione delle strutture in legno Parte 1-2: Regole generali – Progettazione strutturale contro l'incendio) in accordo con le NTC18.

Le analisi sono state condotte allo Stato Limite Ultimo, adottando la combinazione eccezionale dei carichi:

$$F_d = G_1 + G_2 + P + \sum_{i} \Psi_{2i} Q_{ki}$$

essendo:

 G_{k_1} il valore del peso proprio degli elementi strutturali;

 G_{k2} il valore del peso proprio degli elementi non strutturali;

 Q_{k1} il valore caratteristico dell'azione variabile considerata principale;

 ψ_{0i} il coefficiente di combinazione relativo all'azione variabile considerata.

con il coefficiente di combinazione ψ_{2i} pari a 0,00 per l'azione della neve (quota a_s < 1000 m slm) e per il vento.

I valori di progetto e le resistenze del materiale son stati determinati da:

$$f_{d,fi} = k_{mod,fi} \frac{f_{20}}{\gamma_{M,fi}}$$

dove:

 $f_{d,fi}$ è le resistenza di progetto in caso di incendio

 $k_{mod,fi}$ è il fattore di correzione al fuoco = 1.0

 f_{20} è il frattile 20% di una prorietà di resistenza a temperatura normale = $f_{fi}f_k$

 f_{fi} 1,25 per legno massiccio

 $\gamma_{M,fi}$ è il fattore parziale di sicurezza per il legno in caso di incendio = 1.0

Valutando la profondità di carbonatazione si fa riferimento alla seguente tabella

E-mail: infopd@smingegneria.it - Web: www.smingegneria.it

CASTELLO CARRARESI - INTERVENTO DI RESTAURO E	Elaborato:	APPR_31_ST_RDC		
RIQUALIFICAZIONE FUNZIONALE	File:	APPR_31_ST_RDC.doc		
PROGETTO ESECUTIVO	Rev.	00	del	Luglio 2018
	Pagina	55	di	182

	$oldsymbol{eta}_0$ mm/min	$eta_{ m n}$ mm/min
a) Conifere e Faggio Legno lamellare incollato con massa volumica caratteristica ≥290 kg/m³	0,65	0,7
Legno massiccio con massa volumica caratteristica ≥290 kg/m³	0,65	0,8

Dove:

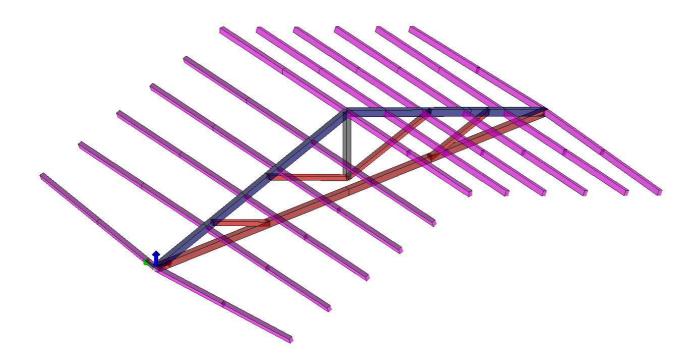
 β_0 =0,65 utilizzato per le sezioni degli arcarecci che non presentano alcun stondamento angolare β_n =0,8 per le sezioni della capriata

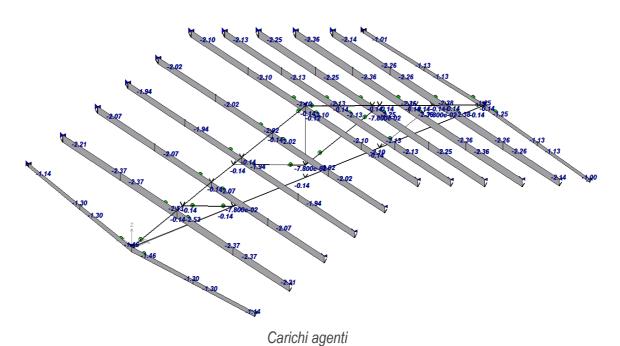
Il modello di calcolo non tiene in considerazione delle fasce metalliche esistenti, non prevedendo specifiche protezioni al fuoco delle stesse. Per quanto riguarda i listelli e la catena, composta da due travi collegate da un dardo di giove, si prevede la protezione con intumescente trasparente che garantisca la resistenza di progetto R60. Si considerano i seguenti carichi permanenti:

Tabella 13 – Copertura lignea

rasona ro coportara ngrioa		
Соррі	0,80	kN/m2
Isolante e guaina	0,13	kN/m2
Tavelle in cotto	0,40	kN/m2
G2: CARICO PERMANENTE NON STRUTTURALE	1,43	kN/m2

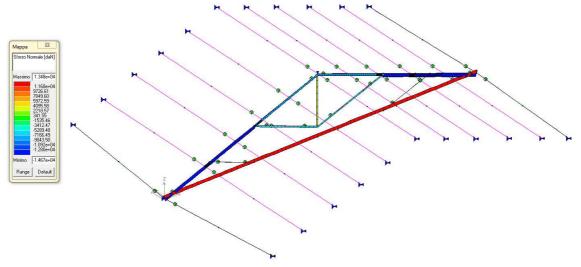
Si riportano in seguito i parametri della sollecitazione del modello con le sezioni ridotte dalla carbonatazione:

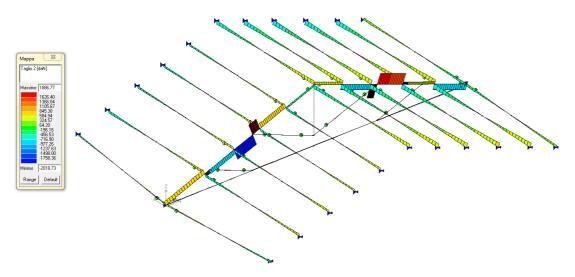

- 55 mm (48 mm + 7 mm) per lato per le sezioni che compongono la capriata
- 46 mm (39 mm + 7 mm) per lato per le sezioni degli arcarecci



PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC				
File:	APPR_31_ST_RDC.doc				
Rev.	00	del	Luglio 2018		
Pagina	56	di	182		

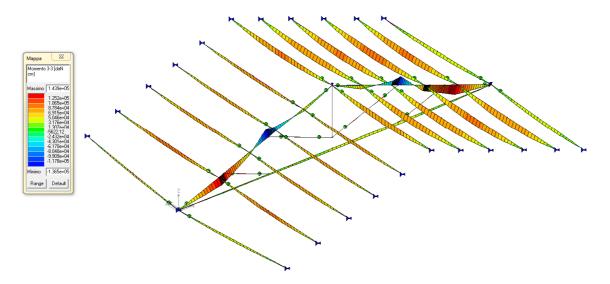

Modello di calcolo



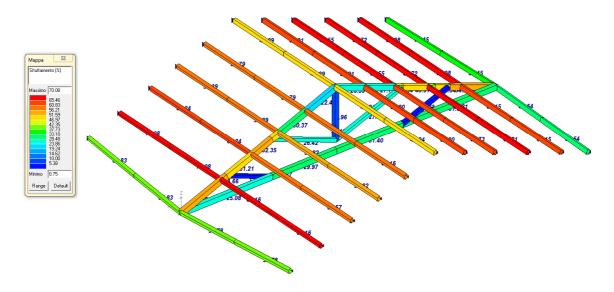
PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	57	di	182

Parametri della sollecitazione - Sforzo normale



Parametri della sollecitazione – Sforzo di taglio



PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	58	di	182

Parametri della sollecitazione – Momento flettente

Sfruttamento percentuale 70,1% < 100% - VERIFICATO

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	59	di	182

11 VERIFICA DEI SOLAI DI INTERPIANO

11.1 CONSOLIDAMENTO DEI SOLAI INTERPIANO (PIANO TERRA-PRIMO)

Il progetto prevede di mantenere i solai interpiano posti tra piano terra e piano primo, le indagini hanno permesso di suddividere le varie stanze in più tipologie di solai che si differenziano per: tipologia di travetto prefabbricato presente; dimensioni e numero di ferri di armatura; tipologia e dimensione delle staffe presenti. Maggiori dettagli si possono avere visionando la tavola materica che individua le tipologie di solaio.

A livello di indagine si sono inoltre eseguite prove di trazione su campioni di acciai e prove di schiacciamento di carote in c.a. Le prove a compressione hanno evidenziato valori molto diversi di resistenza tra travetti (55-90 N/mm²) e soprastante soletta (10-25 N/mm²). È stata inoltre eseguita una prova di carico su uno dei solai (tipologia S1.2), la prova di carico ha evidenziato delle deformate assimilabili ad uno schema statico di semincastro agli appoggi.

Si è quindi proceduti a calibrare un modello di calcolo portando ad eguaglianza la deformata rileva durante la prova di carico, con la deformata risultante dal modello di calcolo che riproponeva le condizioni di carico della prova. In seguito si è verificata la variabilità dei risultati in base alla scelta delle caratteristiche del cls presente optando per la verifica di due schemi di carico limite, che presentano comunque deformata compatibile con la prova eseguita, ma resistenze di cls e valori di k del semincastro diversi. La scelta di questi due schemi permette in un caso di massimizzare il momento negativo (ipotesi di un calcestruzzo C16/20) e nell'altro il momento positivo (ipotesi di un calcestruzzo C35/45). La prova di carico ha evidenziato anche che in corrispondenza delle pareti di spina presenti fino al terzo livello c'è un incastro maggiore rispetto a dove la parete si ferma al secondo livello, pertanto si sono verificati anche due diversi schemi con semincastri asimmetrici, per un totale quindi di 4 diverse configurazioni.

Tale modalità di verifica è stata poi estesa anche alle altre tipologie di solaio ipotizzando i due schemi di semincastro rilevati nel solaio S1.2 nelle due diverse configurazioni simmetrica e asimmetrica.

11.1.1 Verifica solaio tipologia S1.1 e S1.2

I solai S1.1 e S1.2 si differenziano solo per la presenza di un controsoffitto in laterizio, per il quale è previsto la rimozione. Si procede quindi con la verifica, armatura integrativa prevista Ø 12 passo 20x20.

	Momento					
Modello	massimo	M_{sd}	MRd stato di fatto	Verifica	MRd stato di progetto	Verifica
Modelli C 16/20	Mpos – configurazione simmetrica	19,71 kNm	19,68 kNm	N.V.	22,74 kNm	V.
Con carichi di progetto	Mneg – configurazione asimmetrica	29,60 kNm	14,59 kNm	N.V.	35,17 kNm	V.
Modelli C 35/45	Mpos – configurazione simmetrica	24,19 kNm	19,68 kNm	N.V.	25,19 kNm	V.
Con carichi di progetto	Mneg – configurazione asimmetrica	25,32 kNm	14,59 kNm	N.V.	35,17 kNm	V.

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	60	di	182

11.1.2 Verifica solaio tipologia S1.3 e S1.4

I solai S1.3 e S1.4 si differenziano solo per la presenza di un controsoffitto in laterizio, per il quale è previsto la rimozione. Si procede quindi con la verifica, armatura integrativa prevista Ø 8 passo 20x20.

	Momento					
Modello	massimo	M_{sd}	MRd stato di fatto	Verifica	MRd stato di progetto	Verifica
Modelli C 16/20	Mpos – configurazione simmetrica	3,74 kNm	3,48 kNm	N.V.	4,90 kNm	V.
Con carichi di progetto	Mneg – configurazione asimmetrica	5,39 kNm	0,05 kNm	N.V.	19,68 kNm	V.
Modelli C 35/45	Mpos – configurazione simmetrica	4,68 kNm	3,48 kNm	N.V.	4,90 kNm	V.
Con carichi di progetto	M _{neg –} configurazione asimmetrica	5,22 kNm	0,05 kNm	N.V.	19,68 kNm	V.

11.1.3 Verifica solaio tipologia S1.5 (solaio Palma)

Il solaio S1.5, presenta una luce maggiore rispetto agli altri solai ed una tipologia di travetti prefabbricati diversi. Si procede quindi con la verifica, armatura integrativa prevista Ø 12 passo 20x20.

	Momento					
Modello	massimo	M_{sd}	MRd stato di fatto	Verifica	MRd stato di progetto	Verifica
Modelli C 16/20	Mpos – configurazione simmetrica	32,67 kNm	30,76 kNm	N.V.	34,42 kNm	V.
Con carichi di progetto	Mneg – configurazione asimmetrica	43,30 kNm	22,92 kNm	N.V.	51,19 kNm	V.
Modelli C 35/45	M _{pos} – configurazione simmetrica	41,36 kNm	30,76 kNm	N.V.	35,36 kNm	N.V.
Con carichi di progetto	Mneg – configurazione asimmetrica	33,94 kNm	22,92 kNm	N.V.	51,19 kNm	V.

Il solaio in oggetto non risulta verificato nemmeno in seguito all'intervento di consolidamento, pertanto risulta necessario intervenire all'intradosso o limitare i carichi accidentali. In fase di progettazione definitiva si prevede una <u>limitazione del carico accidentale a 300 kg/mq limitatamente al vano in oggetto n°01.014</u>, di seguito si riportano le verifiche con le nuove sollecitazioni.

Modello	Momento massimo	M _{sd}	MRd stato di fatto	Verifica	MRd stato di progetto	Verifica
Modelli C 16/20	Mpos – configurazione simmetrica	25,40 kNm	30,76 kNm	V.	34,42 kNm	V.
Con carichi di progetto	M _{neg – configurazione} asimmetrica	33,64 kNm	22,92 kNm	N.V.	51,19 kNm	V.
Modelli C 35/45	Mpos – configurazione simmetrica	31,49 kNm	30,76 kNm	N.V.	35,36 kNm	V.
Con carichi di progetto	Mneg – configurazione asimmetrica	29,10 kNm	22,92 kNm	N.V.	51,19 kNm	V.

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	61	di	182

11.1.4 Verifica solaio tipologia S1.6

Il solaio S1.6, presenta una luce limitata e delle staffe diverse rispetto ai solai S1.1 o S1.3. Si procede quindi con la verifica, armatura integrativa prevista Ø 8 passo 20x20.

Modello	Momento massimo	M _{sd}	M _{Rd stato} di fatto	Verifica	MRd stato di progetto	Verifica
Modelli C 16/20	M _{pos – configurazione} simmetrica	8,90 kNm	14,97 kNm	V.	17,69 kNm	V.
Con carichi di progetto	Mneg – configurazione asimmetrica	11,87 kNm	0,05 kNm	N.V.	24,70 kNm	V.
Modelli C 35/45	Mpos – configurazione simmetrica	11,16 kNm	14,97 kNm	V.	17,69 kNm	V.
Con carichi di progetto	Mneg – configurazione asimmetrica	11,18 kNm	0,05 kNm	N.V.	24,70 kNm	V.

11.1.5 Verifica solaio tipologia S1.11

Si procede quindi con la verifica, del solaio S1.11, armatura integrativa prevista Ø 12 passo 20x20.

Modello	Momento massimo	M _{sd}	MRd stato di fatto	Verifica	MRd stato di progetto	Verifica
Modelli C 16/20	Mpos – configurazione simmetrica	14,53 kNm	15,47 kNm	V.	18,26 kNm	V.
Con carichi di progetto	M _{neg} – configurazione asimmetrica	20,92 kNm	0,06 kNm	N.V.	26,91 kNm	V.
Modelli C 35/45	Mpos – configurazione simmetrica	17,96 kNm	15,47 kNm	N.V.	18,26 kNm	V.
Con carichi di progetto	Mneg – configurazione asimmetrica	18,65 kNm	0,06 kNm	N.V.	26,91 kNm	V.

11.1.6 Verifica solaio tipologia S1.12

Si procede quindi con la verifica, del solaio S1.12, armatura integrativa prevista Ø 12 passo 20x20.

Modello	Momento massimo	M _{sd}	MRd stato di fatto	Verifica	M Rd stato di progetto	Verifica
Modelli C 16/20	Mpos – configurazione simmetrica	7,10 kNm	7,81 kNm	V.	8,36 kNm	V.
Con carichi di progetto	Mneg – configurazione asimmetrica	11,09 kNm	0,05 kNm	N.V.	18,20 kNm	V.
Modelli C 35/45	Mpos – configurazione simmetrica	8,79 kNm	7,81 kNm	N.V.	8,98 kNm	V.
Con carichi di progetto	Mneg – configurazione asimmetrica	10,64 kNm	0,05 kNm	N.V.	18,20 kNm	V.

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	62	di	182

11.1.7 Verifica solaio tipologia S1.13

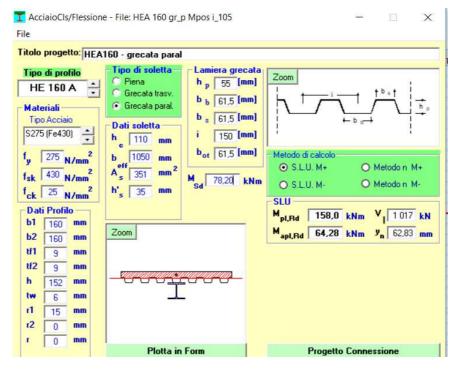
Si procede quindi con la verifica, del solaio S1.13, armatura integrativa prevista Ø 12 passo 20x20.

Modello	Momento massimo	M _{sd}	MRd stato di fatto	Verifica	M Rd stato di progetto	Verifica
Modelli C 16/20	Mpos – configurazione simmetrica	23,18 kNm	31,05 kNm	V.	35,65 kNm	V.
Con carichi di progetto	Mneg – configurazione asimmetrica	35,51 kNm	12,07 kNm	N.V.	38,49 kNm	V.
Modelli C 35/45	Mpos – configurazione simmetrica	28,13 kNm	31,05 kNm	V.	35,65 kNm	V.
Con carichi di progetto	Mneg – configurazione asimmetrica	31,23 kNm	12,07 kNm	N.V.	38,49 kNm	V.

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	63	di	182

11.2 VERIFICA DEI NUOVI SOLAI INTERPIANO (PIANO PRIMO-SECONDO)

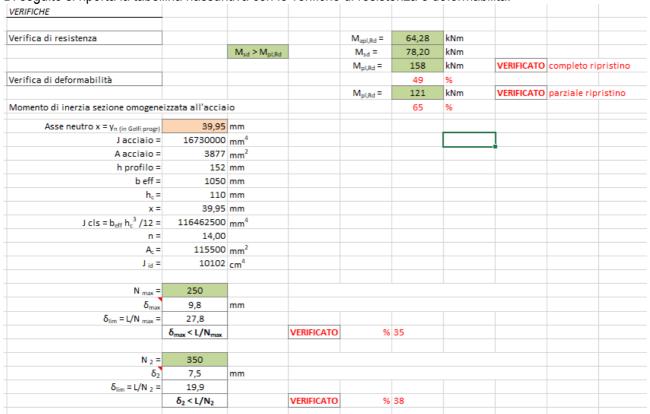

Il nuovo solaio interpiano viene realizzato con profili HEA 160, lamiera grecata trasversale alle putrelle e getto collaborante spessore 11 cm, interasse massimo putrelle 105 cm. Il solaio presenta un ulteriore strato di getto di 3 cm per la finitura-lisciatura del pavimento in cemento finale.

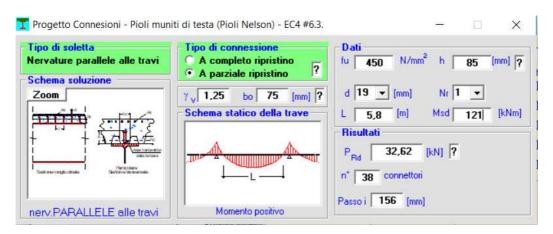
Di seguito vengono riportate le sollecitazioni agli SLU: M_{Sd}=78,20 kNm e T_{Sd}=45,01 kN.

Verifica fase 1

Verifica di resistenza e deformabilità

Per il calcolo del momento resistente della sezione collaborante viene utilizzato il programma gratuito "profili" del Prof. Gelfi.




PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	64	di	182

Di seguito si riporta la tabellina riassuntiva con le verifiche di resistenza e deformabilità.

Verifica e dimensionamento dei connettori (pioli Nelson)

Nel caso in esame il completo ripristino non è realizzabile in quanto il passo dei connettori risulta inferiore a 5d [EC4 #6.4.2 (3)]. Si prevede quindi la realizzazione di una connessione a parziale ripristino, atta a garantire il momento sollecitante M_{Sd} =77,15 kNm, tale momento viene garantito prevedendo un n°di connettori pari a 38 (passo 150 mm), in grado di garantire un $M_{pl,Rd}$ =121,00 kNm (verificato 65%).

CASTELLO CARRARESI - INTERVENTO DI RESTAURO E
RIQUALIFICAZIONE FUNZIONALE

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	65	di	182

12 VERIFICA DEI NUOVI ARCHITRAVI

L'edificio presenta diversi architravi in legno, che si presentano in cattivo stato di conservazione e pertanto necessitano di sostituzione. Durante i lotti di intervento precedenti alcuni architravi sono già stati sostituiti mantenendo la tipologia lignea, pertanto si procede con la stessa filosofia di intervento.

Per la verifica ed il dimensionamento degli architravi si procede tenendo conto delle luci presenti ed ipotizzando che sopra l'architrave si generei un effetto ad arco scaricando il peso del muro ai lati; pertanto si considera gravante sull'architrave il peso del muro incluso in un triangolo equilatero pari alla luce dell'architrave. Nel caso in cui ci siano carichi concentrati nelle vicinanze della luce dell'architrave, essi dovranno essere considerati nella posizione effettiva o eventualmente ammettendo una distribuzione del carico a 60°.

12.1 VERIFICA DI ARCHITRAVI IN LEGNO 16X16

Al piano terra numerosi architravi si trovano in cattivo stato, le aperture a questo livello presentano delle notevoli luci, dovute anche alla presenza di murature di notevole spessore e di aperture con ampie strombature dello stipite, pertanto sul lato più interno si rilevano luci di circa 235 cm, che vano poi a ristringersi verso l'esterno. Di seguito si riporta la verifica degli architravi in legno 16x16, posti in sede affiancati uno con l'altro, per coprire l'intera larghezza dell'apertura, ad esclusione dell'ultima porzione verso l'esterno che presenta archivolti in mattoni o cornici in pietra.

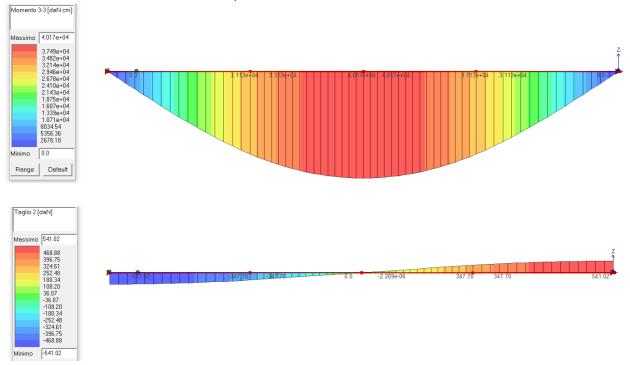


Figura 16 – Momento flettente e taglio (combinazione SLU)

Di seguito si riporta la schermata riassuntiva di verifica dell'elemento ligneo.

		Elaborato:	APPR_31_ST_RDC		
		File:	APPR_31_ST_RDC.doc		
	PROGETTO ESECUTIVO RELAZIONE DI CALCOLO	Rev.	00	del	Luglio 2018
		Pagina	66	di	182

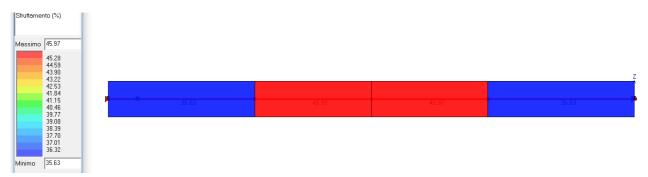


Figura 17 – Sfruttamento della sezione in legno 16X16 (elemento verificato per sfruttamenti < 100%)

Le facce esterne degli architravi devono essere trattate per garantire una resistenza al fuoco R60.

12.2 VERIFICA DI ARCHITRAVI IN LEGNO 16X14

Al piano primo e secondo le aperture (finestre e porte) presentano luci inferiori sia per la mancanza di ampie strombature, sia per la presenza di pareti di dimensioni "normali" circa 70-80 cm che anche in presenza di strombatura non determina grossi aumenti della larghezza dell'apertura. Nei casi più gravosi si rilevano quindi luci di circa 160-170 cm. Di seguito si riporta la verifica degli architravi in legno (base 16, altezza 14), affiancati uno con l'altro fino a coprire l'intera larghezza dell'apertura, ad esclusione dell'ultima porzione verso l'esterno che presenta archivolti in mattoni o cornici in pietra.

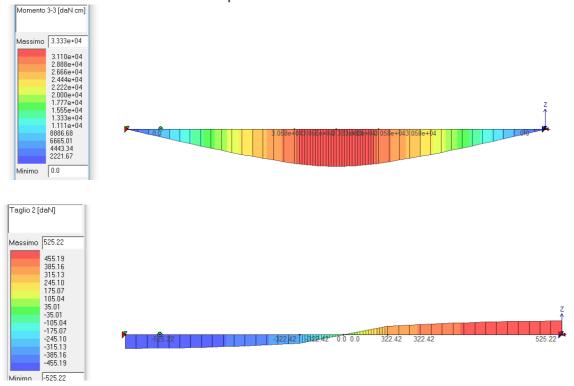


Figura 18 – Momento flettente e taglio (combinazione SLU)

Di seguito si riporta la schermata riassuntiva di verifica dell'elemento ligneo.

	0.1012220 0.111011201 1112111 0 0 111201.10110 2	Elaborato:	APPR_31_ST_RDC		
		File:	APPR_31_ST_RDC.doc		
	PROGETTO ESECUTIVO	Rev.	00	del	Luglio 2018
		Pagina	67	di	182

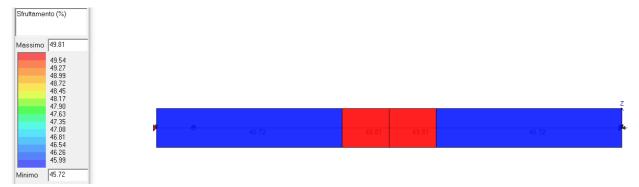


Figura 19 – Sfruttamento della sezione in legno 16X14 (elemento verificato per sfruttamenti < 100%)

Le facce esterne degli architravi devono essere trattate per garantire una resistenza al fuoco R60.

12.3 VERIFICA DI ARCHITRAVI IN LEGNO 14X12

Al piano primo la muratura che divide con il corridoio laterale, presenta per ogni stanza un livello di aperture posto al di sopra delle porte d'ingresso (3 aperture per ogni stanza), tale configurazione è presente anche al livello superiore dove gli architravi sono già stati sostituiti, si rileva che anche a questo livello gli architravi (ove presenti) presentano un cattivo stato di conservazione e pertanto necessitano di una sostituzione. Le aperture in oggetto presentano luci ridotte in genere inferiori ai 90 cm. Di seguito si riporta la verifica degli architravi in legno utilizzando delle sezioni più piccole base 14 altezza 12, tale dimensione permette di realizzare l'architrave affiancando 2 elementi per ogni apertura.

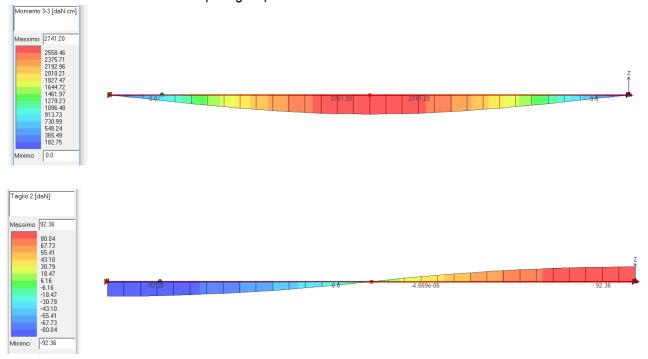


Figura 20 – Momento flettente e taglio (combinazione SLU)

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	68	di	182

Di seguito si riporta la schermata riassuntiva di verifica dell'elemento ligneo.

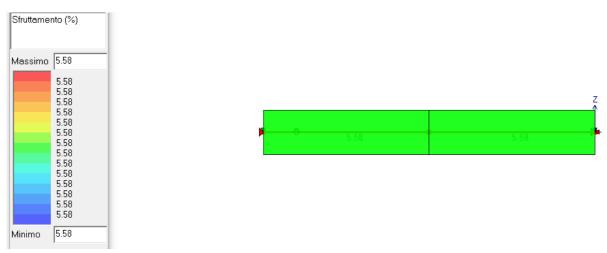


Figura 21 – Sfruttamento della sezione in legno 14X12 (elemento verificato per sfruttamenti < 100%)

Le facce esterne degli architravi devono essere trattate per garantire una resistenza al fuoco R60.

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	69	di	182

13 VALUTAZIONE DELL'INDICE DI SICUREZZA SISMICA GLOBALE

La valutazione del rischio sismico è stata condotta seguendo la metodologia proposta dalle Linee Guida per la Valutazione e Riduzione del Rischio Sismico del Patrimonio Culturale.

Si è proceduto in primis con l'analisi dei meccanismi locali di collasso (analisi cinematica - LV2) ed infine con l'analisi globale della struttura (valutazione complessiva - LV3) attraverso modellazione a telaio equivalente, utilizzando un'analisi statica non lineare (push-over).

Le analisi sono state condotte allo Stato Limite di Salvaguardia della Vita (SLV), adottando la combinazione sismica dei carichi:

$$F_d = E + G_1 + G_2 + \sum_{i} \Psi_{2i} Q_{ki}$$

essendo:

il valore del peso proprio degli elementi strutturali;

 G_{k2} il valore del peso proprio degli elementi non strutturali;

 Q_{k1} il valore caratteristico dell'azione variabile considerata principale;

 ψ_{0i} il coefficiente di combinazione relativo all'azione variabile considerata.

con il coefficiente di combinazione ψ_{2i} pari a 0,6 per gli ambienti suscettibili di affollamento, 0,00 per l'azione della neve (quota a_s < 1000 m slm) e per il vento.

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	70	di	182

13.1 VERIFICA DEI PRINCIPALI MECCANISMI LOCALI

Data la loro complessità intrinseca e la loro difficile catalogazione, gli edifici storici in muratura non possono essere analizzati nelle stesse modalità di acciai e calcestruzzi. Le normative sottolineano questo aspetto molto importante: le NTC 2018 al Cap. 8.7.1 riporta che "nelle costruzioni esistenti in muratura, in particolare negli edifici, si possono manifestare meccanismi, sia locali, sia globali. I meccanismi locali interessano singoli pannelli murari o più ampie porzioni della costruzione e impegnano i pannelli murari prevalentemente fuori del loro piano medio; essi sono favoriti dall'assenza o scarsa efficacia dei collegamenti, sia tra pareti e orizzontamenti, sia negli incroci tra pareti. I meccanismi globali sono quelli che interessano l'intera costruzione e impegnano i pannelli murari prevalentemente nel loro piano medio. La sicurezza della costruzione deve essere valutata nei confronti di entrambi i tipi di meccanismo."

Inoltre la Circolare del 2 febbraio 2009 n. 617, al punto C8.7.1.1, riguardante i requisiti di resistenza degli edifici esistenti in muratura, indica che la valutazione della sicurezza sismica degli edifici in muratura va eseguita, oltre che con riferimento al comportamento sismico globale, anche con riferimento all'analisi dei meccanismi locali di collasso: "Quando la costruzione non manifesta un chiaro comportamento d'insieme, ma piuttosto tende a reagire al sisma come un insieme di sottosistemi (meccanismi locali), la verifica su un modello globale non ha rispondenza rispetto al suo effettivo comportamento sismico. Particolarmente frequente è il caso delle grandi chiese o di edifici estesi e di geometria complessa non dotati di solai rigidi e resistenti nel piano, né di efficaci e diffusi sistemi di catene o tiranti. In tali casi la verifica globale può essere effettuata attraverso un insieme esaustivo di verifiche locali."

Si procede quindi in questo capitolo alla definizione in primo luogo dei macroelementi, ovvero parti costruttivamente riconoscibili del manufatto, di caratteristiche omogenee in riferimento al comportamento strutturale che può coincidere con una porzione identificabile anche sotto l'aspetto architettonico e funzionale. Successivamente a questi ultimi vengono applicati più meccanismi di collasso fuori dal piano rispetto ai quali vengono calcolati coefficienti di attivazione specifici ad ogni caso.

Nella porzione di struttura oggetto di intervento (ala Sud / Sud-Est) sono stati individuati 6 macroelementi principali per un totale di 18 meccanismi di collasso analizzati. La scelta dei macroelementi è stata effettuata tenendo conto delle possibili vulnerabilità della struttura.

All'interno della struttura sulle muratura di spina sono presenti degli arconi senza catene di contenimento delle spinte, pertanto nei meccanismi si è tenuto conto della spinta statica degli stessi.

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	71	di	182

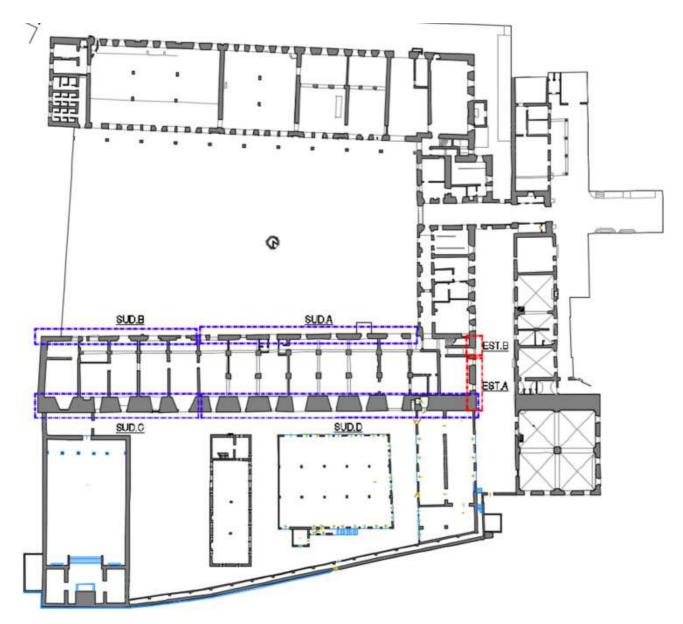
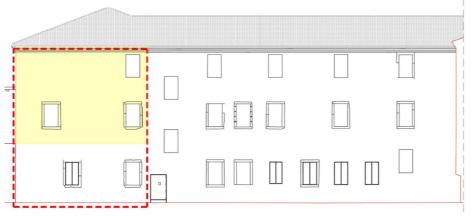


Figura 22: schema generale dei macro-elementi considerati

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	72	di	182


13.1.1 Cinematismo Est A (stato di fatto): Ribaltamento porzione di facciata lato Est

Si prendono in considerazione i seguenti schemi di collasso:

MINA NATIONAL PROPERTY OF THE PROPERTY OF THE

Figura 13.23: schema di collasso 1

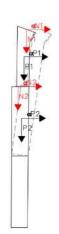


Figura 13.24: schema di collasso 2

Figura 13.25: schema di collasso 3

CASTELLO CARRARESI - INTERVENTO DI RESTAURO E
RIQUALIFICAZIONE FUNZIONALE

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	73	di	182

<u>Dati edificio</u>	
Altezza totale della struttura	12,22 m
Basamento	0 m
Numero di piani dell'edificio	3
Coefficiente di partecipazione modale	1,28571
Coefficiente di amplificazione stratigrafica	1,5
Coefficiente Cc	1,4961
Primo periodo di vibrare della struttura T ₁	0,32679 sec.
Spettro di risposta elastica [S _e (T ₁)]	0,38565

Dati pareti murarie						
	altezza (m)	spessore (m)	lunghezza (m)	peso specifico (kN/m³)	peso parete Pi (kN)	resistenza a compressione media (N/cm²)
1° livello	4,62	1,17	10,46	18,00	936,96	240,00
2° livello	4,22	1,21	10,46	18,00	874,47	240,00
3° livello	3,38	1,10	10,46	18,00	657,95	240,00
	carichi solaio Ni (kN)	braccio scarichi (m)	componente verticale volte- archi o altro (kN)	componente orizzontale di volte-archi (kN)	braccio archi- volte (m)	altezza di scarico (m)
1° livello	106,84	0,87	-	-	-	-
2° livello	186,03	0,91	-	-	-	-
3° livello	47,35	0,80	-	-	-	-
Presenza di tiranti, d	cordoli o altri sistem	ni di trattenimento				
	Tiro catene (kN)	altezza (m)	presenza di cordoli (kNm)	Calcolo	arretramento della	<u>cerniera</u>
1° livello	-	-	-	piano terra	0,23	m
2° livello	-	-	-	piano primo	0,16	m
3° livello	-	-	-	piano secondo	0,07	m

livelli interessati al ribaltamento	α_0	M* (C8A.4.3)	e*	a ₀ * (C8A.4.4)	Z	ψ (Z)
1°-2°-3°	0,063	222,423	0,776	0,663	-	-
2°-3°	0,126	143,022	0,794	1,300	4,620	0,38
3°	0,310	65,895	0,916	2,767	8,840	0,72

Analisi cinematica lineare: verifica stato limite di salvaguardia della vita (C8A.4.2.3 circolare n°617/2009)							
livelli interessati al ribaltamento	a _{gslv} (C8A.4.9)	a _{gslv} (C8A.4.10)	a _{gslv} >a _g	ag	verifica SLV	% verifica	
1°-2°-3°	0,090	-	0,090	0,099	non verificato	91,00%	
2°-3°	0,177	0,140	0,140	0,099	verificato	141,39%	
3°	0,376	0,156	0,156	0,099	verificato	157,32%	

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	74	di	182

13.1.2 Cinematismo Est B (stato di fatto): Ribaltamento porzione di facciata lato Est

Si prendono in considerazione i seguenti schemi di collasso:

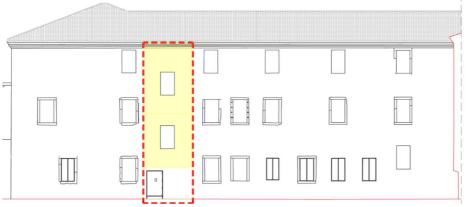



Figura 13.26: schema di collasso 1

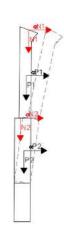



Figura 13.27: schema di collasso 2

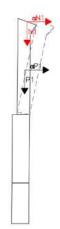


Figura 13.28: schema di collasso 3

CASTELLO CARRARESI - INTERVENTO DI RESTAURO E
RIQUALIFICAZIONE FUNZIONALE

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	75	di	182

<u>Dati edificio</u>		
Altezza totale della struttura	12,23	m
Basamento	0	m
Numero di piani dell'edificio	3	
Coefficiente di partecipazione modale	1,28571	
Coefficiente di amplificazione stratigrafica	1,5	
Coefficiente Cc	1,4961	
Primo periodo di vibrare della struttura T ₁	0,32699	sec.
Spettro di risposta elastica [S _e (T ₁)]	0,38565	

Dati pareti murarie						
	altezza (m)	spessore (m)	lunghezza (m)	peso specifico (kN/m³)	peso parete Pi (kN)	resistenza a compressione media (N/cm²)
1° livello	2,49	1,17	2,49	18,00	137,73	240,00
2° livello	4,18	0,89	3,75	18,00	219,47	240,00
3° livello	5,56	0,85	3,75	18,00	289,32	240,00
	carichi solaio Ni (kN)	braccio scarichi (m)	componente verticale volte- archi o altro (kN)	componente orizzontale di volte-archi (kN)	braccio archi- volte (m)	altezza di scarico (m)
1° livello	-	-	-	-	-	-
2° livello	-	-	-	-	-	-
3° livello	2,26	0,55	-	-	-	-
Presenza di tiranti, d	cordoli o altri sistem	ni di trattenimento				
	Tiro catene (kN)	altezza (m)	presenza di cordoli (kNm)	<u>Calcolo</u>	arretramento della	<u>cerniera</u>
1° livello	-	-	-	piano terra	0,23	m
2° livello	-	-	-	piano primo	0,13	m
3° livello	-	-	-	piano secondo	0,08	m

livelli interessati al ribaltamento	α_0	M* (C8A.4.3)	e*	a ₀ * (C8A.4.4)	Z	ψ (Ζ)
1°-2°-3°	0,041	50,134	0,758	0,437	-	-
2°-3°	0,065	40,664	0,780	0,685	2,490	0,20
3°	0,131	29,445	0,990	1,082	6,670	0,55

Analisi cinematica lineare: verifica stato limite di salvaguardia della vita (C8A.4.2.3 circolare n°617/2009)						
livelli interessati al ribaltamento	a _{gslv} (C8A.4.9)	a _{gslv} (C8A.4.10)	a _{gslv} >a _g	a_{g}	verifica SLV	% verifica
1°-2°-3°	0,059	-	0,059	0,099	non verificato	60,04%
2°-3°	0,093	0,137	0,093	0,099	non verificato	94,12%
3°	0,147	0,081	0,081	0,099	non verificato	81,57%

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC			
File:	APPR_31_ST_RDC.doc			
Rev.	00	del	Luglio 2018	
Pagina	76	di	182	

13.1.3 Cinematismo Cortile Sud A (stato di fatto): Ribaltamento porzione di facciata Cortile lato Sud

Si prendono in considerazione i seguenti schemi di collasso:

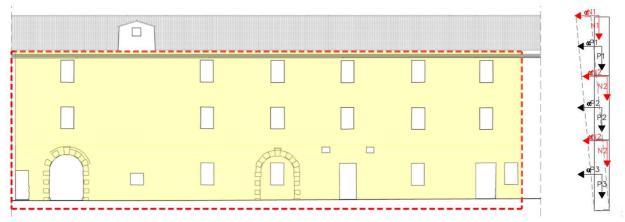


Figura 13.29: schema di collasso 1

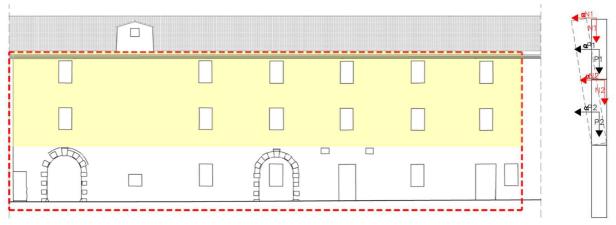


Figura 13.30: schema di collasso 2

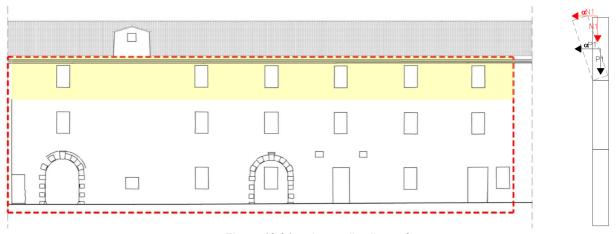


Figura 13.31: schema di collasso 3

Dati edificio
Altezza totale della struttura

12,25 m

CASTELLO CARRARESI - INTERVENTO DI RESTAURO E	Elaborato:
RIQUALIFICAZIONE FUNZIONALE	File:
PROGETTO ESECUTIVO	Rev.
TROOL TO LOLGO TIVO	

RELAZIONE DI CALCOLO

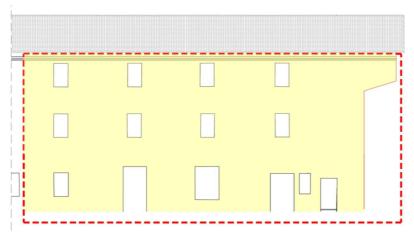
Elaborato:	APPR_31_ST_RDC				
File:	APPR_31_ST_RDC.doc				
Rev.	00	del	Luglio 2018		
Pagina	77	di	182		

Basamento	0 m
Numero di piani dell'edificio	3
Coefficiente di partecipazione modale	1,28571
Coefficiente di amplificazione stratigrafica	1,5
Coefficiente Cc	1,4961
Primo periodo di vibrare della struttura T ₁	0,3274 sec.
Spettro di risposta elastica [S _e (T ₁)]	0.38565

Dati pareti murarie						
	altezza (m)	spessore (m)	lunghezza (m)	peso specifico (kN/m³)	peso parete Pi (kN)	resistenza a compressione media (N/cm²)
1° livello	4,54	0,88	35,06	18,00	2508,42	240,00
2° livello	4,22	0,88	41,86	18,00	2580,49	240,00
3° livello	3,49	0,88	40,79	18,00	2079,00	240,00
	carichi solaio Ni (kN)	braccio scarichi (m)	componente verticale volte- archi o altro (kN)	componente orizzontale di volte-archi (kN)	braccio archi- volte (m)	altezza di scarico (m)
1° livello	209,75	0,63	52,32	54,46	0,71	2,60
2° livello	292,85	0,63	-	-	-	-
3° livello	457,09	0,58	-	-	-	-
Presenza di tiranti, d	cordoli o altri sistem	ni di trattenimento				
	Tiro catene (kN)	altezza (m)	presenza di cordoli (kNm)	<u>Calcolo a</u>	arretramento della	<u>cerniera</u>
1° livello	-	-	-	piano terra	0,21	m
2° livello	-	-	-	piano primo	0,12	m
3° livello	-	-	-	piano secondo	0,07	m

Analisi cinematica line	are: valutazion	e della curva di capac	ità (C8A.4.2.2	circolare n°617/2009)		
livelli interessati al ribaltamento	α_0	M* (C8A.4.3)	e*	a ₀ * (C8A.4.4)	Z	ψ (Z)
1°-2°-3°	0,036	660,834	0,792	0,370	-	-
2°-3°	0,081	441,643	0,801	0,829	4,540	0,37
3°	0,192	233,590	0,903	1,741	8,760	0,72

Analisi cinematica lineare: verifica stato limite di salvaguardia della vita (C8A.4.2.3 circolare n°617/2009)						
livelli interessati al ribaltamento	a _{gslv} (C8A.4.9)	a _{gslv} (C8A.4.10)	a _{gslv} >a _g	a_{g}	verifica SLV	% verifica
1°-2°-3°	0,050	-	0,050	0,099	non verificato	50,75%
2°-3°	0,113	0,091	0,091	0,099	non verificato	91,98%
3°	0,237	0,099	0,099	0,099	verificato	100,14%



PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC			
File:	APPR_31_ST_RDC.doc			
Rev.	00	del	Luglio 2018	
Pagina	78	di	182	

13.1.4 Cinematismo Cortile Sud B (stato di fatto): Ribaltamento porzione di facciata Cortile lato Sud

Si prendono in considerazione i seguenti schemi di collasso:

071 N1 P1 P1 P2 P2 P2 P3

Figura 13.32: schema generale del macro-elemento considerato

Figura 13.33: schema generale del macro-elemento considerato

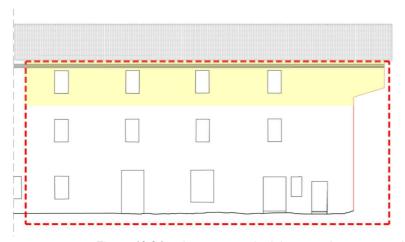


Figura 13.34: schema generale del macro-elemento considerato

CASTELLO CARRARESI - INTERVENTO DI RESTAURO E
RIQUALIFICAZIONE FUNZIONALE

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	79	di	182

Dati edificio		
Altezza totale della struttura	12,25	m
Basamento	0	m
Numero di piani dell'edificio	3	
Coefficiente di partecipazione modale	1,28571	
Coefficiente di amplificazione stratigrafica	1,5	
Coefficiente Cc	1,4961	
Primo periodo di vibrare della struttura T ₁	0,3274	sec.
Spettro di risposta elastica [Se(T1)]	0,38565	

Dati pareti murarie						
	altezza (m)	spessore (m)	lunghezza (m)	peso specifico (kN/m³)	peso parete Pi (kN)	resistenza a compressione media (N/cm²)
1° livello	4,54	0,86	21,31	18,00	1417,97	240,00
2° livello	4,22	0,86	26,14	18,00	1586,70	240,00
3° livello	3,49	0,86	26,14	18,00	1384,22	240,00
	carichi solaio Ni (kN)	braccio scarichi (m)	componente verticale volte- archi o altro (kN)	componente orizzontale di volte-archi (kN)	braccio archi- volte (m)	altezza di scarico (m)
1° livello	157,57	0,63	-	-	-	-
2° livello	182,88	0,63	-	-	-	-
3° livello	207,77	0,56	-	-	-	-
Presenza di tiranti,	cordoli o altri sistem	ni di trattenimento				
	Tiro catene (kN)	altezza (m)	presenza di cordoli (kNm)	<u>Calcolo</u> a	arretramento della	<u>cerniera</u>
1° livello	-	-	-	piano terra	0,21	m
2° livello	-	-	-	piano primo	0,12	m
3° livello	-	-	-	piano secondo	0,07	m

Analisi cinematica lineare: valutazione della curva di capacità (C8A.4.2.2 circolare n°617/2009)							
livelli interessati al ribaltamento α_0 M^* (C8A.4.3) e^* a_0^* (C8A.4.4) Z							
1°-2°-3°	0,036	407,172	0,809	0,364	-	-	
2°-3°	0,078	276,526	0,807	0,794	4,540	0,37	
3°	0,190	149,465	0,921	1,691	8,760	0,72	

Analisi cinematica lir	Analisi cinematica lineare: verifica stato limite di salvaguardia della vita (C8A.4.2.3 circolare n°617/2009)								
livelli interessati al ribaltamento a_{gslv} (C8A.4.9) a_{gslv} (C8A.4.10) $a_{gslv} > a_g$ verifica SLV									
1°-2°-3°	0,049	-	0,049	0,099	non verificato	49,96%			
2°-3°	0,108	0,087	0,087	0,099	non verificato	88,13%			
3°	0,230	0,096	0,096	0,099	non verificato	97,25%			

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	80	di	182

13.1.5 Cinematismo Sud C (stato di fatto): Ribaltamento porzione di facciata lato Sud

Si prendono in considerazione i seguenti schemi di collasso:

M1 M2 M2 M2 M2 M2 M3 M3 M3

Figura 13.35: schema di collasso 1

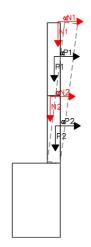


Figura 13.36: schema di collasso 2

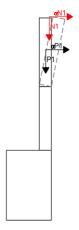


Figura 13.37: schema di collasso 3

CASTELLO CARRARESI - INTERVENTO DI RESTAURO E
RIQUALIFICAZIONE FUNZIONALE

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	81	di	182

Dati edificio		
Altezza totale della struttura	12,13	m
Basamento	0	m
Numero di piani dell'edificio	3	
Coefficiente di partecipazione modale	1,28571	
Coefficiente di amplificazione stratigrafica	1,5	
Coefficiente Cc	1,4961	
Primo periodo di vibrare della struttura T ₁	0,32499	sec.
Spettro di risposta elastica [S _e (T ₁)]	0,38565	

Dati pareti murarie						
	altezza (m)	spessore (m)	lunghezza (m)	peso specifico (kN/m³)	peso parete Pi (kN)	resistenza a compressione media (N/cm²)
1° livello	4,47	2,92	24,93	21,00	6660,58	256,00
2° livello	4,22	0,78	29,02	21,00	1847,01	352,00
3° livello	3,44	0,74	29,68	21,00	1407,46	352,00
	carichi solaio Ni (kN)	braccio scarichi (m)	componente verticale volte- archi o altro (kN)	componente orizzontale di volte-archi (kN)	braccio archi- volte (m)	altezza di scarico (m)
1° livello	-	-	-	-	-	-
2° livello	-	-	-	-	-	-
3° livello	222,03	0,44	-	-	-	-
Presenza di tiranti,	cordoli o altri sistem	ni di trattenimento				
	Tiro catene (kN)	altezza (m)	presenza di cordoli (kNm)	<u>Calcolo</u> :	arretramento della	<u>cerniera</u>
1° livello	-	-	-	piano terra	0,32	m
2° livello	-	-	-	piano primo	0,09	m
3° livello	-	-	-	piano secondo	0,05	m

Analisi cinematica lineare: valutazione della curva di capacità (C8A.4.2.2 circolare n°617/2009)							
livelli interessati al ribaltamento	α_0	M* (C8A.4.3)	e*	a ₀ * (C8A.4.4)	Z	ψ (Ζ)	
1°-2°-3°	0,173	687,420	0,665	2,132	-	-	
2°-3°	0,076	277,762	0,784	0,792	4,470	0,37	
3°	0,174	150,354	0,905	1,572	8,690	0,72	

Analisi cinematica lir	Analisi cinematica lineare: verifica stato limite di salvaguardia della vita (C8A.4.2.3 circolare n°617/2009)								
livelli interessati al ribaltamento	verifica SLV	% verifica							
1°-2°-3°	0,290	-	0,290	0,099	verificato	292,74%			
2°-3°	0,108	0,087	0,087	0,099	non verificato	88,36%			
3°	0,214	0,089	0,089	0,099	non verificato	90,25%			

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	82	di	182

13.1.6 Cinematismo Sud D (stato di fatto): Ribaltamento porzione di facciata lato Sud

Si prendono in considerazione i seguenti schemi di collasso:

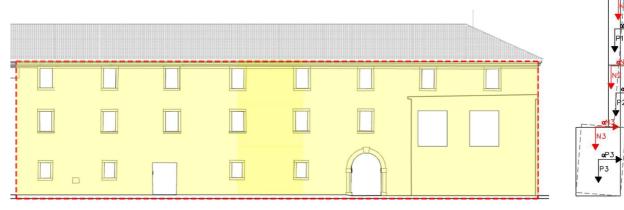


Figura 13.38: schema di collasso 1

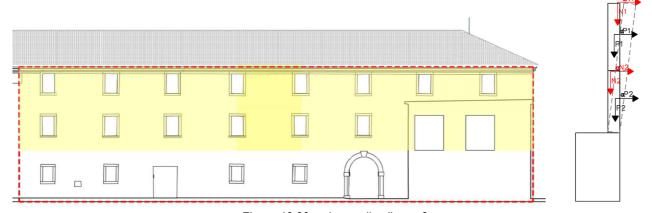


Figura 13.39: schema di collasso 2

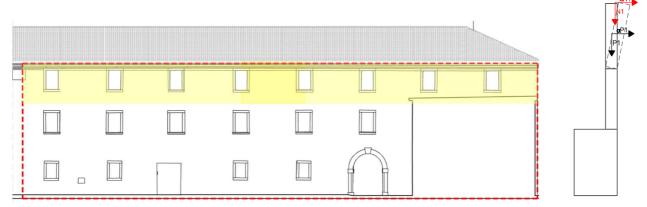


Figura 13.40: schema di collasso 3

CASTELLO CARRARESI - INTERVENTO DI RESTAURO E
RIQUALIFICAZIONE FUNZIONALE

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	83	di	182

<u>Dati edificio</u>		
Altezza totale della struttura	12,13	m
Basamento	0	m
Numero di piani dell'edificio	3	
Coefficiente di partecipazione modale	1,28571	
Coefficiente di amplificazione stratigrafica	1,5	
Coefficiente Cc	1,4961	
Primo periodo di vibrare della struttura T ₁	0,32499	sec.
Spettro di risposta elastica [S _e (T ₁)]	0,38565	

Dati pareti murarie						
	altezza (m)	spessore (m)	lunghezza (m)	peso specifico (kN/m³)	peso parete Pi (kN)	resistenza a compressione media (N/cm²)
1° livello	4,47	2,92	47,53	21,00	12902,34	256,00
2° livello	4,22	0,75	52,66	21,00	3019,28	352,00
3° livello	3,44	0,74	52,66	21,00	2519,97	352,00
	carichi solaio Ni (kN)	braccio scarichi (m)	componente verticale volte- archi o altro (kN)	componente orizzontale di volte-archi (kN)	braccio archivolte (m)	altezza di scarico (m)
1° livello	-	-	454,61	548,45	2,75	2,60
2° livello	-	-	134,92	165,00	0,80	1,95
3° livello	515,40	0,44	-	-	-	-
Presenza di tiranti, d	cordoli o altri sistem	ni di trattenimento				
	Tiro catene (kN)	altezza (m)	presenza di cordoli (kNm)	Calcolo	arretramento della	<u>cerniera</u>
1° livello	-	-	-	piano terra	0,33	m
2° livello	-	-	-	piano primo	0,08	m
3° livello	-	-	-	piano secondo	0,05	m

Analisi cinematica lineare: valutazione della curva di capacità (C8A.4.2.2 circolare n°617/2009)							
livelli interessati al ribaltamento	α0	M* (C8A.4.3)	e*	a ₀ * (C8A.4.4)	Z	ψ (Ζ)	
1°-2°-3°	0,161	1298,211	0,651	2,022	-	-	
2°-3°	0,061	503,040	0,797	0,622	4,470	0,37	
3°	0,165	280,090	0,905	1,489	8,690	0,72	

Analisi cinematica lineare: verifica stato limite di salvaguardia della vita (C8A.4.2.3 circolare n°617/2009)								
livelli interessati al ribaltamento agsiv (C8A.4.9) agsiv (C8A.4.10) agsiv >ag verifica SLV % v								
1°-2°-3°	0,275	-	0,275	0,099	verificato	277,63%		
2°-3°	0,085	0,069	0,069	0,099	non verificato	69,49%		
3°	0,202	0,085	0,085	0,099	non verificato	85,51%		

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC					
File:	APPR_31_ST_RDC.doc					
Rev.	00	del	Luglio 2018			
Pagina	84	di	182			

13.1.7 Cinematismo Est A (stato di progetto): Ribaltamento porzione di facciata lato Est

Si riesegue la verifica tenendo conto dello stato di progetto che prevede l'inserimento di tiranti \emptyset 24 all'ultimo livello dell'edificio.

Figura 13.41: schema di collasso 1

Figura 13.43: schema di collasso 3

CASTELLO CARRARESI - INTERVENTO DI RESTAURO E
RIQUALIFICAZIONE FUNZIONALE

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	85	di	182

<u>Dati edificio</u>		
Altezza totale della struttura	12,22	m
Basamento	0	m
Numero di piani dell'edificio	3	
Coefficiente di partecipazione modale	1,28571	
Coefficiente di amplificazione stratigrafica	1,5	
Coefficiente Cc	1,4961	
Primo periodo di vibrare della struttura T ₁	0,32679	sec.
Spettro di risposta elastica [S _e (T ₁)]	0,38565	

Dati pareti murarie						
	altezza (m)	spessore (m)	lunghezza (m)	peso specifico (kN/m³)	peso parete Pi (kN)	resistenza a compressione media (N/cm²)
1° livello	4,62	1,17	10,46	18,00	936,96	240,00
2° livello	4,22	1,21	10,46	18,00	874,47	240,00
3° livello	3,38	1,10	10,46	18,00	657,95	240,00
	carichi solaio Ni (kN)	braccio scarichi (m)	componente verticale volte- archi o altro (kN)	componente orizzontale di volte-archi (kN)	braccio archi- volte (m)	altezza di scarico (m)
1° livello	106,84	0,87	-	-	-	-
2° livello	186,03	0,91	-	-	-	-
3° livello	47,35	0,80	-	-	-	-
Presenza di tiranti, d	cordoli o altri sistem	ni di trattenimento				
	Tiro catene (kN)	altezza (m)	presenza di cordoli (kNm)	<u>Calcolo</u>	arretramento della	<u>cerniera</u>
1° livello	-	-	-	piano terra	0,23	m
2° livello	-	-	-	piano primo	0,16	m
3° livello	75,00	11,35	-	piano secondo	0,07	m

Analisi cinematica lineare: valutazione della curva di capacità (C8A.4.2.2 circolare n°617/2009)						
livelli interessati al ribaltamento	α_0	M* (C8A.4.3)	e*	a ₀ * (C8A.4.4)	Z	ψ (Ζ)
1°-2°-3°	0,113	222,423	0,776	1,185	-	-
2°-3°	0,204	143,022	0,794	2,095	4,620	0,38
3°	0,478	65,895	0,916	4,265	8,840	0,72

Analisi cinematica lineare: verifica stato limite di salvaguardia della vita (C8A.4.2.3 circolare n°617/2009)							
livelli interessati al ribaltamento a_{gslv} (C8A.4.9) a_{gslv} (C8A.4.10) $a_{gslv} > a_g$ a_g verifica SLV % verifi							
1°-2°-3°	0,161	-	0,161	0,099	verificato	162,78%	
2°-3°	0,285	0,226	0,226	0,099	verificato	227,98%	
3°	0,580	0,240	0,240	0,099	verificato	242,52%	

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	86	di	182

13.1.8 Cinematismo Est B (stato di progetto): Ribaltamento porzione di facciata lato Est

Si riesegue la verifica tenendo conto dello stato di progetto che prevede l'inserimento di tiranti \emptyset 24 all'ultimo livello dell'edificio.

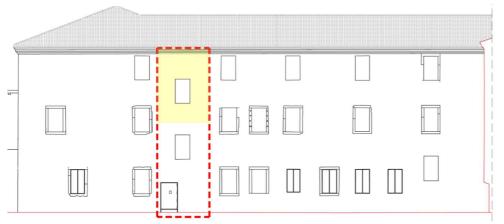

P2 P2 P3 P5

Figura 13.44: schema di collasso 1

Figura 13.45: schema di collasso 2

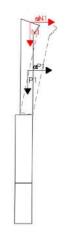


Figura 13.46: schema di collasso 3

CASTELLO CARRARESI - INTERVENTO DI RESTAURO E
RIQUALIFICAZIONE FUNZIONALE

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	87	di	182

<u>Dati edificio</u>		
Altezza totale della struttura	12,23	m
Basamento	0	m
Numero di piani dell'edificio	3	
Coefficiente di partecipazione modale	1,28571	
Coefficiente di amplificazione stratigrafica	1,5	
Coefficiente Cc	1,4961	
Primo periodo di vibrare della struttura T ₁	0,32699	sec.
Spettro di risposta elastica [S _e (T ₁)]	0,38565	

Dati pareti murarie	Dati pareti murarie					
	altezza (m)	spessore (m)	lunghezza (m)	peso specifico (kN/m³)	peso parete Pi (kN)	resistenza a compressione media (N/cm²)
1° livello	2,49	1,17	2,49	18,00	137,73	240,00
2° livello	4,18	0,89	3,75	18,00	219,47	240,00
3° livello	5,56	0,85	3,75	18,00	289,32	240,00
	carichi solaio Ni (kN)	braccio scarichi (m)	componente verticale volte- archi o altro (kN)	componente orizzontale di volte-archi (kN)	braccio archi- volte (m)	altezza di scarico (m)
1° livello	-	-	-	-	-	-
2° livello	-	-	-	-	-	-
3° livello	2,26	0,55	-	-	-	-
Presenza di tiranti, d	cordoli o altri sistem	ni di trattenimento				
	Tiro catene (kN)	altezza (m)	presenza di cordoli (kNm)	<u>Calcolo</u>	arretramento della	<u>cerniera</u>
1° livello	-	-	-	piano terra	0,23	m
2° livello	-	-	-	piano primo	0,13	m
3° livello	75,00	11,35	-	piano secondo	0,08	m

Analisi cinematica lineare: valutazione della curva di capacità (C8A.4.2.2 circolare n°617/2009)						
livelli interessati al ribaltamento	α_0	M* (C8A.4.3)	e*	a ₀ * (C8A.4.4)	Z	ψ (Ζ)
1°-2°-3°	0,264	50,134	0,758	2,850	-	-
2°-3°	0,344	40,664	0,780	3,606	2,490	0,20
3°	0,590	29,445	0,990	4,869	6,670	0,55

Analisi cinematica lineare: verifica stato limite di salvaguardia della vita (C8A.4.2.3 circolare n°617/2009)							
livelli interessati al ribaltamento a_{gslv} (C8A.4.9) a_{gslv} (C8A.4.10) $a_{gslv} > a_g$ a_g verifica SLV % verifically verifically $a_{gslv} > a_g$ ver							
1°-2°-3°	0,388	-	0,388	0,099	verificato	391,45%	
2°-3°	0,490	0,721	0,490	0,099	verificato	495,20%	
3°	0,662	0,364	0,364	0,099	verificato	367,23%	

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC					
File:	APPR_31_ST_RDC.doc					
Rev.	00	del	Luglio 2018			
Pagina	88	di	182			

13.1.9 Cinematismo Cortile Sud A (stato di progetto): Ribaltamento porzione di facciata Cortile lato Sud

Si riesegue la verifica tenendo conto dello stato di progetto che prevede l'inserimento di tiranti \emptyset 24 all'ultimo livello dell'edificio.

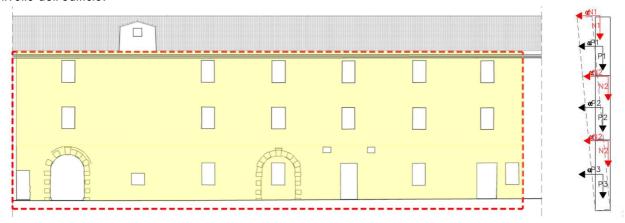


Figura 13.47: schema di collasso 1

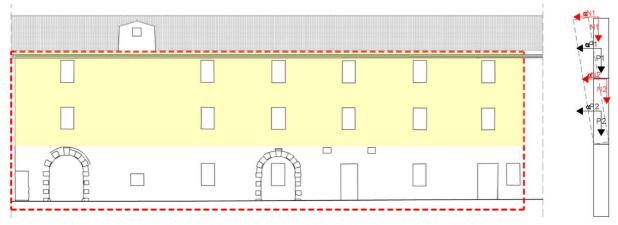


Figura 13.48: schema di collasso 2

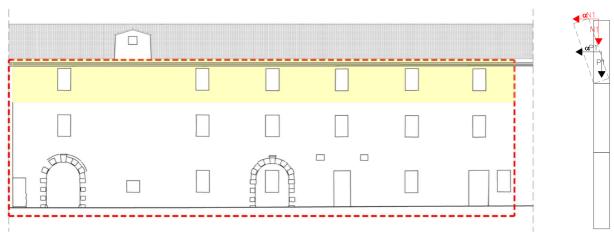


Figura 13.49: schema di collasso 3

CASTELLO CARRARESI - INTERVENTO DI RESTAURO E
RIQUALIFICAZIONE FUNZIONALE

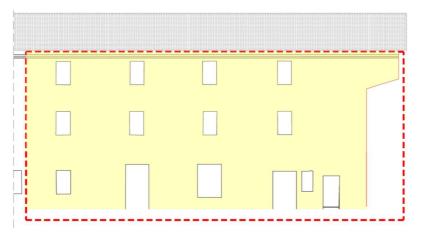
Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	89	di	182

<u>Dati edificio</u>		
Altezza totale della struttura	12,25	m
Basamento	0	m
Numero di piani dell'edificio	3	
Coefficiente di partecipazione modale	1,28571	
Coefficiente di amplificazione stratigrafica	1,5	
Coefficiente Cc	1,4961	
Primo periodo di vibrare della struttura T ₁	0,3274	sec.
Spettro di risposta elastica [S _e (T ₁)]	0,38565	

Dati pareti murarie								
	altezza (m)	spessore (m)	lunghezza (m)	peso specifico (kN/m³)	peso parete Pi (kN)	resistenza a compressione media (N/cm²)		
1° livello	4,54	0,88	35,06	18,00	2508,42	240,00		
2° livello	4,22	0,88	41,86	18,00	2580,49	240,00		
3° livello	3,49	0,88	40,79	18,00	2079,00	240,00		
	carichi solaio Ni (kN)	braccio scarichi (m)	componente verticale volte- archi o altro (kN)	componente orizzontale di volte-archi (kN)	braccio archi- volte (m)	altezza di scarico (m)		
1° livello	209,75	0,63	52,32	54,46	0,71	2,60		
2° livello	292,85	0,63	-	-	-	-		
3° livello	457,09	0,58	-	-	-	-		
Presenza di tiranti, d	cordoli o altri sistem	ni di trattenimento						
	Tiro catene (kN)	altezza (m)	presenza di cordoli (kNm)	Calcolo	arretramento della	<u>cerniera</u>		
1° livello	-	-	-	piano terra	0,21	m		
2° livello	-	-	-	piano primo	0,12	m		
3° livello	375,00	11,65	-	piano secondo	0,07	m		

Analisi cinematica lineare: valutazione della curva di capacità (C8A.4.2.2 circolare n°617/2009)						
livelli interessati al ribaltamento	α_0	M* (C8A.4.3)	e*	a ₀ * (C8A.4.4)	Z	ψ (Ζ)
1°-2°-3°	0,116	660,834	0,792	1,201	-	-
2°-3°	0,199	441,643	0,801	2,034	4,540	0,37
3°	0,400	233,590	0,903	3,622	8,760	0,72

Analisi cinematica lineare: verifica stato limite di salvaguardia della vita (C8A.4.2.3 circolare n°617/2009)						
livelli interessati al ribaltamento	a _{gslv} (C8A.4.9)	a _{gslv} (C8A.4.10)	a _{gslv} >a _g	$\mathbf{a}_{ ext{g}}$	verifica SLV	% verifica
1°-2°-3°	0,163	-	0,163	0,099	verificato	164,99%
2°-3°	0,277	0,224	0,224	0,099	verificato	225,81%
3°	0,492	0,206	0,206	0,099	verificato	208,34%



PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	90	di	182

13.1.10 Cinematismo Cortile Sud B (stato di progetto): Ribaltamento porzione di facciata Cortile lato Sud

Si riesegue la verifica tenendo conto dello stato di progetto che prevede l'inserimento di tiranti \emptyset 24 all'ultimo livello dell'edificio.

0/N1 0/P1 0/P1 0/P2 0/P2 0/P2 0/P2 0/P2 0/P3

Figura 13.50: schema generale del macro-elemento considerato

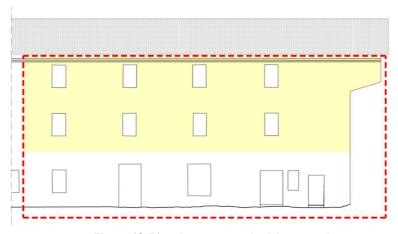


Figura 13.51: schema generale del macro-elemento considerato

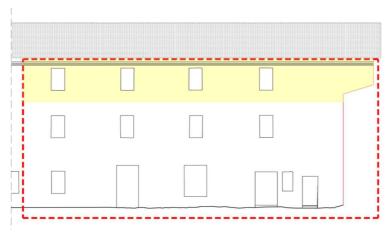


Figura 13.52: schema generale del macro-elemento considerato

CASTELLO CARRARESI - INTERVENTO DI RESTAURO E
RIQUALIFICAZIONE FUNZIONALE

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	91	di	182

Dati edificio		
Altezza totale della struttura	12,25	m
Basamento	0	m
Numero di piani dell'edificio	3	
Coefficiente di partecipazione modale	1,28571	
Coefficiente di amplificazione stratigrafica	1,5	
Coefficiente Cc	1,4961	
Primo periodo di vibrare della struttura T ₁	0,3274	sec.
Spettro di risposta elastica [Se(T1)]	0,38565	

Dati pareti murarie							
	altezza (m)	spessore (m)	lunghezza (m)	peso specifico (kN/m³)	peso parete Pi (kN)	resistenza a compressione media (N/cm²)	
1° livello	4,54	0,86	21,31	18,00	1417,97	240,00	
2° livello	4,22	0,86	26,14	18,00	1586,70	240,00	
3° livello	3,49	0,86	26,14	18,00	1384,22	240,00	
	carichi solaio Ni (kN)	braccio scarichi (m)	componente verticale volte- archi o altro (kN)	componente orizzontale di volte-archi (kN)	braccio archi- volte (m)	altezza di scarico (m)	
1° livello	157,57	0,63	-	-	-	-	
2° livello	182,88	0,63	-	-	-	-	
3° livello	207,77	0,56	-	-	-	-	
Presenza di tiranti,	cordoli o altri sistem	ni di trattenimento					
	Tiro catene (kN)	altezza (m)	presenza di cordoli (kNm)	<u>Calcolo</u> a	arretramento della	<u>cerniera</u>	
1° livello	-	-	-	piano terra	0,21	m	
2° livello	-	-	-	piano primo	0,12	m	
3° livello	225,00	11,65	-	piano secondo	0,07	m	

Analisi cinematica lineare: valutazione della curva di capacità (C8A.4.2.2 circolare n°617/2009)						
livelli interessati al ribaltamento	α0	M* (C8A.4.3)	e*	a ₀ * (C8A.4.4)	Z	ψ (Ζ)
1°-2°-3°	0,114	407,172	0,809	1,156	-	-
2°-3°	0,193	276,526	0,807	1,953	4,540	0,37
3°	0,396	149,465	0,921	3,516	8,760	0,72

Analisi cinematica lineare: verifica stato limite di salvaguardia della vita (C8A.4.2.3 circolare n°617/2009)						
livelli interessati al ribaltamento a_{gslv} (C8A.4.9) a_{gslv} (C8A.4.10) $a_{gslv} > a_g$ a_g				\mathbf{a}_{g}	verifica SLV	% verifica
1°-2°-3°	0,157	-	0,157	0,099	verificato	158,71%
2°-3°	0,266	0,215	0,215	0,099	verificato	216,76%
3°	0,478	0,200	0,200	0,099	verificato	202,27%

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC				
File:	APPR_31_ST_RDC.doc				
Rev.	00	del	Luglio 2018		
Pagina	92	di	182		

13.1.11 Cinematismo Sud C (stato di progetto): Ribaltamento porzione di facciata lato Sud

Si riesegue la verifica tenendo conto dello stato di progetto che prevede l'inserimento di tiranti \emptyset 24 all'ultimo livello dell'edificio.

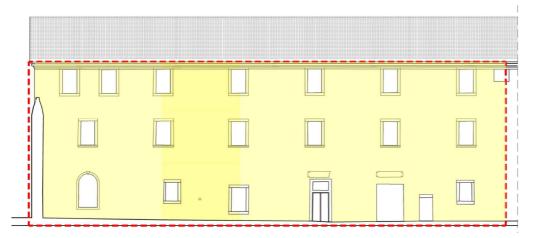


Figura 13.53: schema di collasso 1

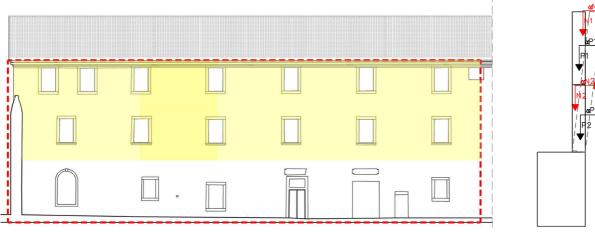


Figura 13.54: schema di collasso 2

Figura 13.55: schema di collasso 3

CASTELLO CARRARESI - INTERVENTO DI RESTAURO E
RIQUALIFICAZIONE FUNZIONALE

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	93	di	182

<u>Dati edificio</u>		
Altezza totale della struttura	12,13	m
Basamento	0	m
Numero di piani dell'edificio	3	
Coefficiente di partecipazione modale	1,28571	
Coefficiente di amplificazione stratigrafica	1,5	
Coefficiente Cc	1,4961	
Primo periodo di vibrare della struttura T ₁	0,32499	sec.
Spettro di risposta elastica [S _e (T ₁)]	0,38565	

Dati pareti murarie						
	altezza (m)	spessore (m)	lunghezza (m)	peso specifico (kN/m³)	peso parete Pi (kN)	resistenza a compressione media (N/cm²)
1° livello	4,47	2,92	24,93	21,00	6660,58	256,00
2° livello	4,22	0,78	29,02	21,00	1847,01	352,00
3° livello	3,44	0,74	29,68	21,00	1407,46	352,00
	carichi solaio Ni (kN)	braccio scarichi (m)	componente verticale volte- archi o altro (kN)	componente orizzontale di volte-archi (kN)	braccio archi- volte (m)	altezza di scarico (m)
1° livello	-	-	-	-	-	-
2° livello	-	-	-	-	-	-
3° livello	222,03	0,44	-	-	-	-
Presenza di tiranti,	cordoli o altri sistem	ni di trattenimento				
	Tiro catene (kN)	altezza (m)	presenza di cordoli (kNm)	<u>Calcolo</u>	arretramento della	<u>cerniera</u>
1° livello	-	-	-	piano terra	0,32	m
2° livello	-	-	-	piano primo	0,09	m
3° livello	225,00	11,65	-	piano secondo	0,05	m

Analisi cinematica line	are: valutazion	ie della curva di capac	ità (C8A.4.2.2	circolare n°617/2009)		
livelli interessati al ribaltamento	α_0	M* (C8A.4.3)	e*	a ₀ * (C8A.4.4)	Z	ψ (Ζ)
1°-2°-3°	0,232	687,420	0,665	2,851	-	-
2°-3°	0,194	277,762	0,784	2,019	4,470	0,37
3°	0,390	150,354	0,905	3,521	8,690	0,72

Analisi cinematica lir	neare: verifica stat	o limite di salvaguaro	dia della vita (C8/	A.4.2.3 circolare r	n°617/2009)	
livelli interessati al ribaltamento	a _{gslv} (C8A.4.9)	a _{gslv} (C8A.4.10)	a _{gslv} >a _g	\mathbf{a}_{g}	verifica SLV	% verifica
1°-2°-3°	0,388	-	0,388	0,099	verificato	391,51%
2°-3°	0,274	0,223	0,223	0,099	verificato	225,35%
3°	0,479	0,200	0,200	0,099	verificato	202,16%

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	94	di	182

13.1.12 Cinematismo Sud D (stato di progetto): Ribaltamento porzione di facciata lato Sud

Si riesegue la verifica tenendo conto dello stato di progetto che prevede l'inserimento di tiranti \emptyset 24 all'ultimo livello dell'edificio.

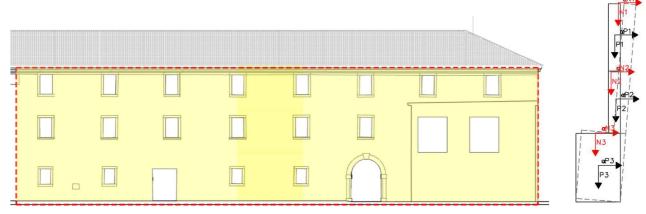


Figura 13.56: schema di collasso 1

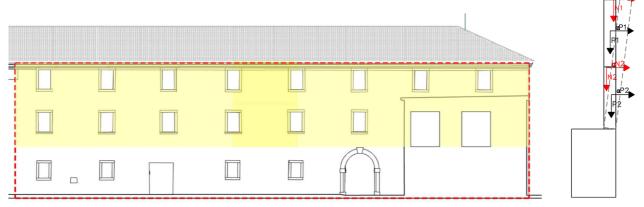


Figura 13.57: schema di collasso 2

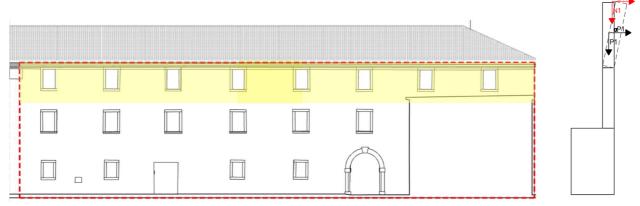


Figura 13.58: schema di collasso 3

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	95	di	182

<u>Dati edificio</u>		
Altezza totale della struttura	12,13	m
Basamento	0	m
Numero di piani dell'edificio	3	
Coefficiente di partecipazione modale	1,28571	
Coefficiente di amplificazione stratigrafica	1,5	
Coefficiente Cc	1,4961	
Primo periodo di vibrare della struttura T ₁	0,32499	sec.
Spettro di risposta elastica [S _e (T ₁)]	0,38565	

Dati pareti murarie						
	altezza (m)	spessore (m)	lunghezza (m)	peso specifico (kN/m³)	peso parete Pi (kN)	resistenza a compressione media (N/cm²)
1° livello	4,47	2,92	47,53	21,00	12902,34	256,00
2° livello	4,22	0,75	52,66	21,00	3019,28	352,00
3° livello	3,44	0,74	52,66	21,00	2519,97	352,00
	carichi solaio Ni (kN)	braccio scarichi (m)	componente verticale volte- archi o altro (kN)	componente orizzontale di volte-archi (kN)	braccio archi- volte (m)	altezza di scarico (m)
1° livello	-	-	454,61	548,45	2,75	2,60
2° livello	-	-	134,92	165,00	0,80	1,95
3° livello	515,40	0,44	-	-	-	-
Presenza di tiranti, d	cordoli o altri sistem	ni di trattenimento				
	Tiro catene (kN)	altezza (m)	presenza di cordoli (kNm)	<u>Calcolo</u>	arretramento della	<u>cerniera</u>
1° livello	-	-	-	piano terra	0,35	m
2° livello	-	-	-	piano primo	0,08	m
3° livello	475,00	11,65		piano secondo	0,05	m

Analisi cinematica line	are: valutazion	e della curva di capac	ità (C8A.4.2.2	circolare n°617/2009)		
livelli interessati al ribaltamento	α0	M* (C8A.4.3)	e*	a ₀ * (C8A.4.4)	Z	ψ (Ζ)
1°-2°-3°	0,227	1298,211	0,651	2,845	-	-
2°-3°	0,194	503,040	0,797	1,986	4,470	0,37
3°	0,396	280,090	0,905	3,577	8,690	0,72

Analisi cinematica lir	neare: verifica stat	o limite di salvaguaro	dia della vita (C8A	.4.2.3 circolare	n°617/2009 <u>)</u>	
livelli interessati al ribaltamento	a _{gslv} (C8A.4.9)	a _{gslv} (C8A.4.10)	a _{gslv} >a _g	a g	verifica SLV	% verifica
1°-2°-3°	0,387	-	0,387	0,099	verificato	390,75%
2°-3°	0,270	0,219	0,219	0,099	verificato	221,70%
3°	0,486	0,203	0,203	0,099	verificato	205,39%

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	96	di	182

13.1.13 Conclusioni all'analisi dei principali meccanismi locali

Si è proceduto alla verifica sismica locale, con i metodi indicati dalla normativa vigente (NTC 2018 e Circolare 617/09). Si riportano schematicamente nella seguente tabella i risultati ottenuti dalle verifiche allo Stato Limite di salvaguardia della Vita (SLV) nelle due configurazioni stato di fatto e stato di progetto.

	Livelli		STATO	DI FATTO	STATO DI	PROGETTO
Cinematismo	interessati	a _g di verifica	a gsLv	% verifica	a gsLv	% verifica
	1°-2°-3° LIV		0,090	91,00%	0,161	162,78%
EST.A	2°-3° LIV	0,099	0,140	141,39%	0,226	227,98%
	3°LIV		0,156	157,32%	0,240	242,52%
	1°-2°-3° LIV		0,059	60,04%	0,388	391,45%
EST.B	2°-3° LIV	0,099	0,093	94,12%	0,490	495,20%
	3°LIV		0,081	81,57%	0,364	367,23%
	1°-2°-3° LIV		0,050	50,75%	0,163	164,99%
SUD.A	2°-3° LIV	0,099	0,091	91,98%	0,224	225,81%
	3°LIV		0,099	100,14%	0,206	208,34%
	1°-2°-3° LIV		0,049	49,96%	0,157	158,71%
SUD.B	2°-3° LIV	0,099	0,087	88,13%	0,215	216,76%
	3°LIV		0,096	97,25%	0,200	202,27%
	1°-2°-3° LIV		0,290	292,74%	0,388	391,51%
SUD.C	2°-3° LIV	0,099	0,087	88,36%	0,223	225,35%
	3°LIV		0,089	90,25%	0,200	202,16%
	1°-2°-3° LIV		0,275	277,63%	0,387	390,75%
SUD.D	2°-3° LIV	0,099	0,069	69,49%	0,219	221,70%
	3°LIV		0,085	85,51%	0,203	205,39%

L'analisi dei risultati emersi dal calcolo, nella configurazione stato di fatto, evidenziava una condizione complessiva di elevata vulnerabilità per i meccanismi locali fuori dal piano della struttura analizzata.

Il progetto prevede l'inserimento di una serie di tiranti metallici in corrispondenza dell'ultimo livello dell'edificio, atti a bloccare il possibile meccanismo di ribaltamento delle pareti, l'intervento permette di raggiungere la verifica per lo stato limite di salvaguardia della vita (SLV).

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	97	di	182

13.2 VALUTAZIONE COMPLESSIVA DELLA RISPOSTA SISMICA DEL FABBRICATO

L'analisi sismica globale delle strutture è stata condotta mediante analisi non lineare statica equivalente, detta anche analisi incrementale a collasso o push-over, eseguita mediante software in licenza 3muri versione 10.9.1.4, specifico per il calcolo e la verifica strutturale di edifici in muratura.

Il modello globale della struttura realizzato è quindi un modello a macroelementi tridimensionale costituito da setti murati che riproducono fedelmente le caratteristiche geometriche e meccaniche reali dell'edificio. I muri sono stati modellati con il loro spessore rilevato dal rilievo geometrico e con le aperture presenti. La modellazione a telaio equivalente avviene dunque con la creazione di maschi murari e fasce di piano, contigui alle aperture, e di nodi rigidi che rappresentano elementi di collegamento tra maschi e fasce.

La concezione matematica che si nasconde nell'impiego dei macroelementi (maschi o fasce) che simulano il comportamento degli elementi murari, permette di riconoscere il meccanismo di danno, a taglio nella sua parte centrale o a pressoflessione sui bordi dell'elemento in modo da percepire la dinamica del danneggiamento così come si presenta effettivamente nella realtà. I nodi del modello sono nodi tridimensionali a 5 gradi di libertà (le tre componenti di spostamento nel sistema di riferimento globale e le rotazioni intorno agli assi X e Y) o nodi bidimensionali a 3 gradi di libertà (due traslazioni e la rotazione nel piano della parete). Quelli tridimensionali vengono usati per permettere il trasferimento delle azioni, da un primo muro a un secondo disposto trasversalmente rispetto al primo. I nodi di tipo bidimensionale hanno gradi di libertà nel solo piano della parete permettendo il trasferimento degli stati di sollecitazione tra i vari punti della parete.

I nodi di tipo bidimensionale hanno gradi di libertà nel solo piano della parete permettendo il trasferimento degli stati di sollecitazione tra i vari punti della parete.

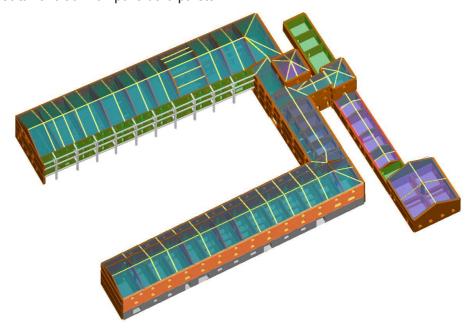


Figura 59: Modello tridimensionale dello stato di fatto del castello e delle zone denominate Edificio 800 e Ex Lavanderia

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	98	di	182

Gli orizzontamenti, sono modellati con elementi solaio a tre nodi connessi ai nodi tridimensionali, sono caricabili perpendicolarmente al loro piano dai carichi accidentali e permanenti; le azioni sismiche caricano il solaio lungo la direzione del piano medio. Per questo l'elemento finito solaio viene definito con una rigidezza assiale, ma nessuna rigidezza flessionale, in quanto il comportamento meccanico principale che si intende sondare è quello sotto carico orizzontale dovuto al sisma. Analoga modellazione per la copertura in quanto concepita come elemento non strutturale (mancando di connessioni adeguate alla muratura perimetrale) e intesa semplicemente come massa sismica. I carichi permanenti e accidentali sono stati applicati direttamente ai solai con i loro coefficienti di combinazione. Per eseguire la verifica sismica è stato introdotto nell'analisi lo spettro calcolato per la zona di Padova.

13.2.1 Analisi statica non lineare

L'analisi statica non lineare consiste nell'applicare alla struttura i carichi gravitazionali e, per la direzione considerata dell'azione sismica, un sistema di forze orizzontali distribuite, ad ogni livello della costruzione, proporzionalmente alle forze d'inerzia ed aventi risultante (taglio alla base) F_b. Tali forze sono scalate, mantenendo invariati i rapporti relativi tra le forze stesse, in modo da far crescere monotonamente lo spostamento orizzontale d_c di un punto di controllo coincidente con il centro di massa del piano superiore ritenuto rappresentativo del comportamento della struttura, fino al raggiungimento delle condizioni ultime. Il risultato dell'analisi consisterà in un diagramma riportante in ascissa lo spostamento orizzontale del punto di controllo, in ordinata la forza orizzontale totale applicata (taglio alla base).

Secondo le prescrizioni di normativa [D.M. 17 gennaio 2018.], le condizioni di carico che devono essere esaminate sono di due tipi:

- 1) Distribuzione di forze proporzionale alle masse (distribuzione uniforme, schema di carico approssimabile al comportamento in fase non lineare):

$$F_i = F_b \cdot \frac{m_i}{\sum_{j=1}^N m_j};$$

- 2) Distribuzione di forze proporzionali al prodotto delle masse per la deformata corrispondente al primo modo di vibrare (schema di carico approssimabile al primo modo di vibrare):

$$F_{i} = F_{b} \cdot \frac{m_{i} \cdot \phi_{i}}{\sum_{j=1}^{N} m_{j} \cdot \phi_{j}} = F_{b} \cdot \frac{m_{i} \cdot Z_{i}}{\sum_{j=1}^{N} m_{j} \cdot Z_{j}}.$$

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	99	di	182

Le verifiche richieste si concretizzano nel confronto tra la curva di capacità per le diverse condizioni previste e la domanda di spostamento prevista dalla normativa:

- Stato Limite Ultimo (SLV): $D_{\max} < D_u$

D_{max}: spostamento massimo richiesto da normativa individuato dallo spettro elastico;

D_u: spostamento corrispondente ad una riduzione della forza non superiore al 20% del massimo;

- Stato Limite Danno (SLD): $D_{\scriptscriptstyle ext{max}}^{\scriptscriptstyle SLD} < D_{\scriptscriptstyle u}$

 D_{\max}^{SLD} : spostamento massimo richiesto da normativa individuato dallo spettro sismico definito per lo stato limite di danno;

 D_u : spostamento minore tra quello corrispondente al raggiungimento della massima forza e quello per il quale lo spostamento relativo fra due piani consecutivi eccede quello massimo pari a $0.003 \cdot h$.

Inoltre, secondo la normativa O.P.C.M. 3362 dell'8 luglio 2004, si calcolano gli indicatori di rischio α_U ed α_e , così definiti:

αυ	=	PGA,DS/PGA10%	(SLV) definito	come	indicatore	del	rischio	di	collasso;
α_{e}	=	PGA,DS/PGA63%	(SLD) definito co	ome indica	atore del rischi	o di inag	jibilità.		

La normativa richiede il tracciamento di una curva di capacità bi-lineare di un sistema equivalente (SDOF). Il tracciamento di tale curva deve avvenire con una retta che, passando per l'origine interseca la curva del sistema reale in corrispondenza del 70% del valore di picco; la seconda retta risulterà parallela all'asse degli spostamenti tale da generare l'equivalenza delle aree tra i diagrammi del sistema reale e quello equivalente. La determinazione della curva relativa al sistema equivalente, permette di determinare il periodo con cui ricavare lo spostamento massimo richiesto dal sisma, secondo gli spettri riportati sulla normativa. La normativa definisce un'eccentricità accidentale del centro delle masse pari al 5% della massima dimensione dell'edificio in direzione perpendicolare al sisma. In base alla tipologia dell'edificio e alle scelte progettuali che si ritengono più idonee, si può decidere la condizione di carico sismico da prendere in esame. Per l'edificio in oggetto, non avendo simmetria in pianta, né lungo X né lungo Y, il numero di analisi svolte è pari a 8 per ogni distribuzione di forze scelta. I risultati delle analisi, riportati in forma sintetica nelle tabelle successive, riportano il livello di sicurezza delle strutture rispetto alle azioni orizzontali agenti nel proprio piano. Successivamente alla presentazione dei dati tabellari, viene proposta la visualizzazione grafica della più "onerosa" tra le analisi eseguite, con indicazione delle modalità di collasso strutturale in riferimento alla curva di capacità.

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	100	di	182

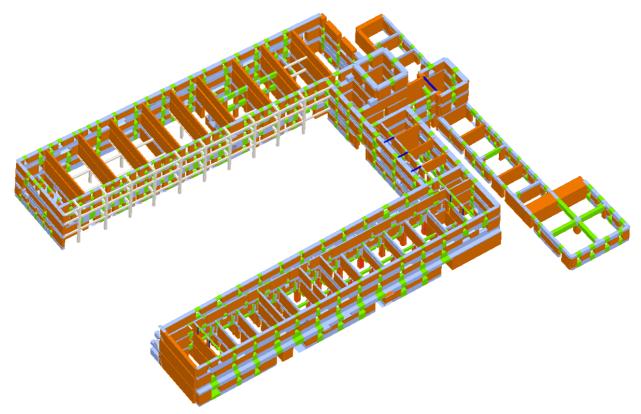


Figura 60: Mesh del telaio equivalente dello stato di fatto del Castello Le sigle riportate nelle tabelle hanno i seguenti significati:

Dir. Sisma	Direzione di incidenza dell'azione sismica;
Distrib.	Distribuzione dell'azione sismica (proporzionale alle masse o al 1° modo);
Ecc.	Eccentricità dell'azione sismica rispetto al centro di massa;
D max	Richiesta di spostamento del sisma del punto di controllo;
Du	Spostamento massimo consentito del punto di controllo SLV;
D _d	Spostamento massimo consentito del punto di controllo SLD;
D _o	Spostamento massimo consentito del punto di controllo SLO;
q*	Rapporto tra la forza di risposta elastica e la forza di snervamento del sistema equivalente (se >3 analisi non soddisfatta);
Ver.	Verifica soddisfatta o meno;

CASTELLO CARRARESI - INTERVENTO DI RESTAURO E	Elaborato:	APPR_31_ST_RDC		
RIQUALIFICAZIONE FUNZIONALE F	File:	APPR_31_ST_RDC.doc		
PROGETTO ESECUTIVO	Rev.	00	del	Luglio 2018
	Pagina	101	di	182

13.2.2 Risultati del modello globale del corpo principale del Castello

Di seguito vengono riportati i risultati dell'analisi statica non lineare prendendo come nodo di riferimento per gli spostamenti il nodo n° 326 del dell'ultimo livello.

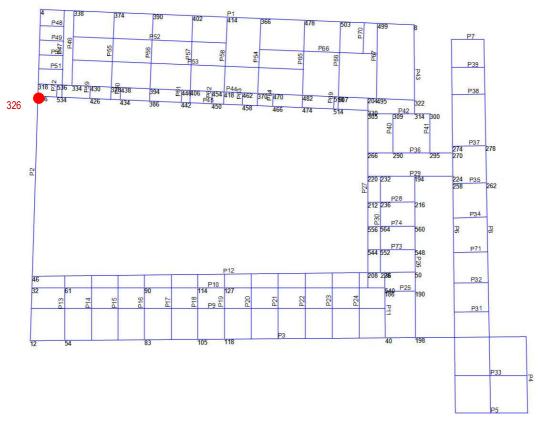


Figura 61: Posizione del nodo di riferimento

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc	C	
Rev.	00	del	Luglio 2018
Pagina	102	di	182

13.2.3 Schema di analisi globale

N.	Dir. sisma	Car. sismico prop.	Ecc. [cm]	α SLC	α SLV	α SLD	αSLO
1	+X	Uniforme	0,0	1,106	1,152	3,103	3,884
2	+X	Forze statiche	0,0	1,110	1,134	3,269	4,136
3	-X	Uniforme	0,0	1,204	1,252	3,283	4,110
4	-X	Forze statiche	0,0	1,214	1,233	3,380	4,269
5	+Y	Uniforme	0,0	0,812	0,843	1,992	2,468
6	+Y	Forze statiche	0,0	0,939	0,952	2,046	2,543
7	-Y	Uniforme	0,0	0,890	0,916	2,561	3,221
8	-Y	Forze statiche	0,0	0,982	0,993	2,745	3,472
9	+X	Uniforme	430,9	0,867	0,910	1,996	2,441
10	+X	Uniforme	-430,9	1,440	1,488	3,287	4,093
11	+X	Forze statiche	430,9	0,857	0,880	2,352	2,933
12	+X	Forze statiche	-430,9	1,819	1,826	4,307	4,020
13	-X	Uniforme	430,9	0,932	0,976	2,706	3,379
14	-X	Uniforme	-430,9	2,420	2,437	3,957	4,519
15	-X	Forze statiche	430,9	0,922	0,943	2,614	3,269
16	-X	Forze statiche	-430,9	2,593	2,571	3,472	3,682
17	+Y	Uniforme	531,1	0,746	0,779	2,337	2,920
18	+Y	Uniforme	-531,1	0,762	0,786	1,610	1,989
19	+Y	Forze statiche	531,1	0,703	0,721	2,201	2,750
20	+Y	Forze statiche	-531,1	0,683	0,700	1,844	2,304
21	-Y	Uniforme	531,1	0,674	0,707	2,098	2,610
22	-Y	Uniforme	-531,1	0,815	0,836	2,096	2,637
23	-Y	Forze statiche	531,1	0,604	0,623	1,860	2,299
24	-Y	Forze statiche	-531,1	0,853	0,864	2,141	2,700

Tabella 14 Risultati analisi Push-Over - Nodo di riferimento n°326

Le 24 analisi svolte non risultano tutte verificate, dimostrando una capacità strutturale dell'edificio minore della domanda sismica, soprattutto nella direzione Y del sisma. In seguito vengono proposti i grafici delle curve push-over e le immagini delle modalità di collasso delle analisi più gravose nelle due direzioni principali.

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	103	di	182

13.2.4 Analisi 11 - Direzione +X - Forze Statiche - Eccentricità +430,85 cm

				SL	.C	SI	_V	SL	.D	SLO					
N.	Dir. sisma	Car. sismico prop.	Ecc.	Dmax	Du	Dmax	Du	Dmax	Dd	Dmax	Dd	α SLC	α SLV	α SLD	α SLO
			[cm]	[cm]	[cm]	[cm]	[cm]	[cm]	[cm]	[cm]	[cm]				
11	, ,	Forze statiche	430,85	2,14	1,76	1,56	1,32	0,56	1,49	0,47	1,49	0,857	0,880	2,352	2,933

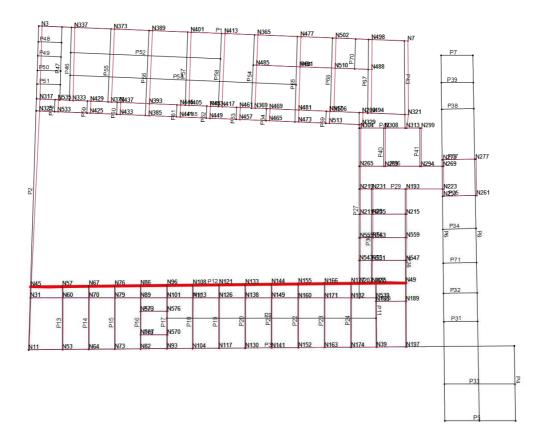


Figura 62: Deformata in pianta con evidenziata una delle pareti più sollecitate nella direzione X

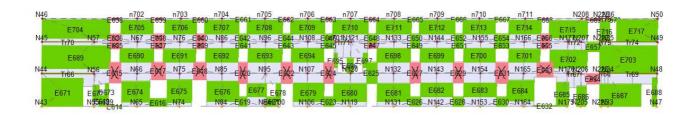


Figura 63: Danno allo stato limite di collasso incipiente (NC)

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	104	di	182

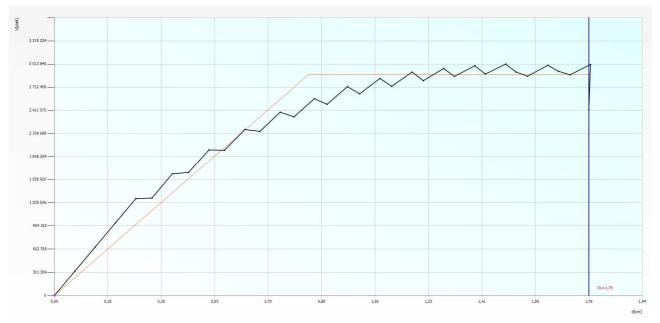


Figura 64: Curva di capacità dell'analisi n°11: l'asta verticale in rosso indica la richiesta sismica

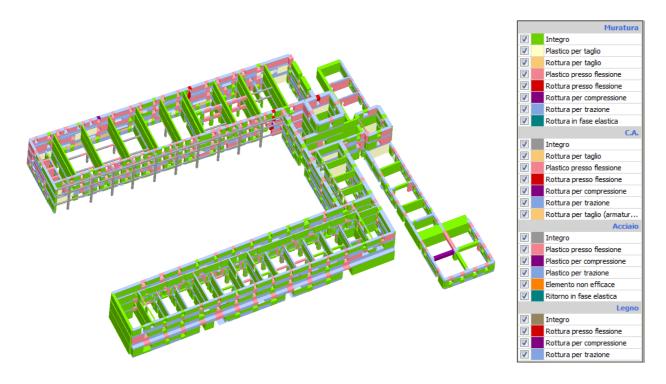


Figura 65: Vista assonometrica allo stato limite di collasso incipiente (NC) dell'analisi n°11;

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	105	di	182

13.2.5 Analisi 23 - Direzione -Y - Uniforme - Eccentricità +531,08 cm

				SL	.C	SI	_V	SL	.D	SLO					
N.	Dir. sisma	Car. sismico prop.	Ecc.	Dmax	Du	Dmax	Du	Dmax	Dd	Dmax	Dd	α SLC	α SLV	α SLD	α SLO
			[cm]	[cm]	[cm]	[cm]	[cm]	[cm]	[cm]	[cm]	[cm]				·
23		Forze statiche	+531,08	2,55	1,36	1,89	1,02	0,68	1,36	0,57	1,36	0,604	0,623	1,860	2,299

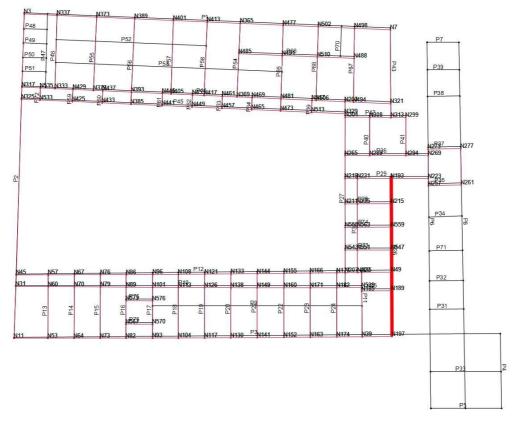


Figura 66: Deformata in pianta con evidenziata una delle pareti più sollecitate nella direzione Y

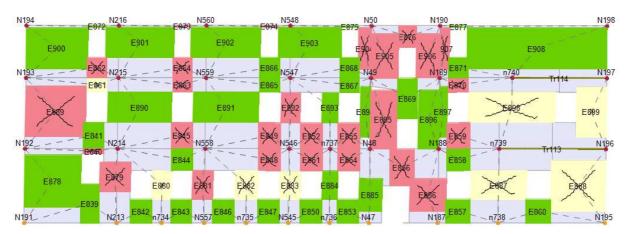


Figura 67: Danno allo stato limite di collasso incipiente (NC)

CASTELLO CARRARESI - INTERVENTO DI RESTAURO E	
RIQUALIFICAZIONE FUNZIONALE	

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	106	di	182

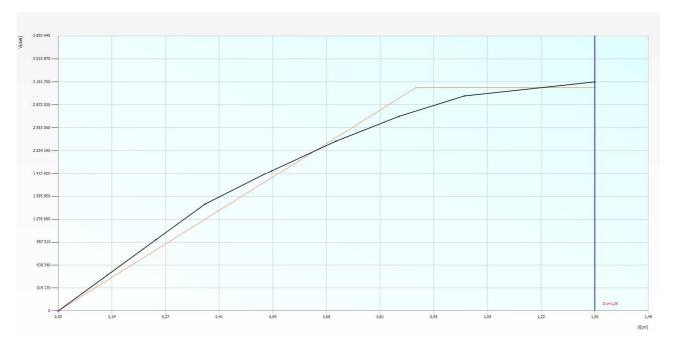


Figura 68: Curva di capacità dell'analisi n°23: l'asta verticale in rosso indica la richiesta sismica

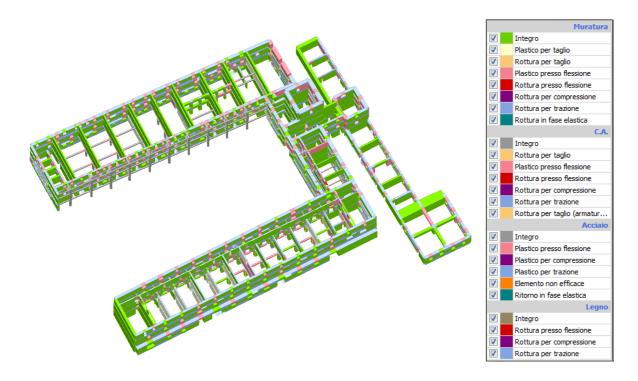
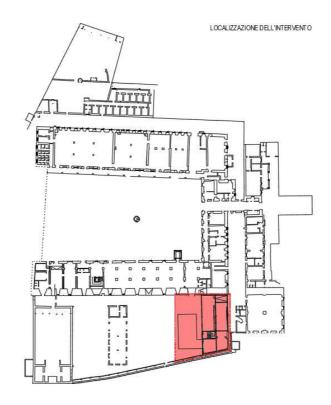


Figura 69: Vista assonometrica allo stato limite di collasso incipiente (NC) dell'analisi n°23;



CASTELLO CARRARESI - INTERVENTO DI RESTAURO E
RIQUALIFICAZIONE FUNZIONALE

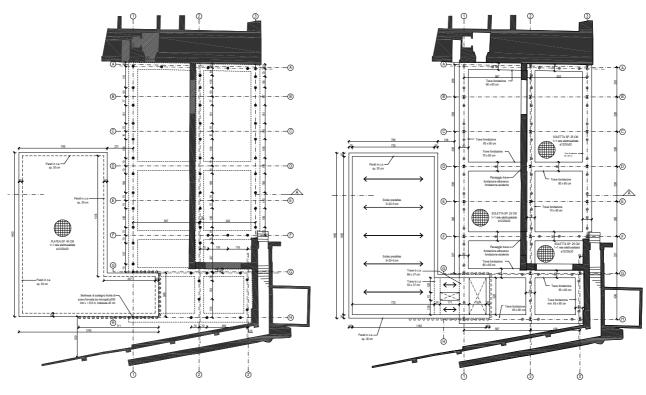
Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	107	di	182

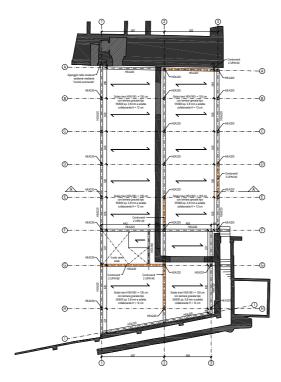
14 EX LAVANDERIA

Il progetto prevede la demolizione dell'attuale edificio denominato "ex lavanderia" e la costruzione, sul medesimo sedime, di un nuovo fabbricato con struttura portante in acciaio. L'edificio, di due piani fuori terra per un'altezza di circa 9,0 m, è inscrivibile in pianta in un rettangolo di dimensioni 25,0 x 11,0 m.

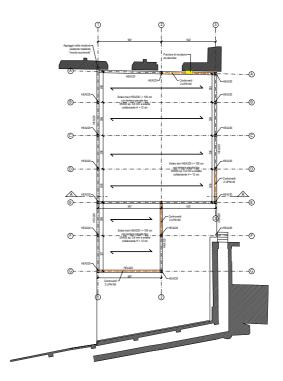
Il fabbricato è posizionato tra il corpo principale del castello ed il percorso sulle mura verso Riviera Tiso da Camposampiero, strutturalmente separata dagli edifici adiacenti per mezzo di giunti sismici. La struttura è costituita da un telaio in acciaio controventato, con solai in acciaio con lamiera grecata e soletta in c.a. collaborante. Vista la presenza di terreno di scarse proprietà sull'intera area fino ad una profondità di circa 4,0 m, le fondazioni sono costituite da un reticolo di travi in c.a. impostate su micropali in c.a. di lunghezza variabile.

Si riportano in maniera sintetica i principali profili metallici utilizzati per le strutture in elevazione:


Pilastri	HEA220
Travi primo impalcato (principali)	HEA220
Travi primo impalcato (secondarie)	HEA160
Travi secondo impalcato (principali)	HEA220
Travi secondo impalcato (secondarie)	HEA220
Controventi	UPN160


PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC				
File:	APPR_31_ST_RDC.doc				
Rev.	00	del	Luglio 2018		
Pagina	108	di	182		



Pianta pali

Pianta fondazioni

Pianta primo impalcato

Pianta copertura

CASTELLO CARRARESI - INTERVENTO DI RESTAURO E
RIQUALIFICAZIONE FUNZIONALE

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	109	di	182

14.1 ANALISI DEI CARICHI

Per il calcolo delle azioni si fa riferimento a quanto riportato nel Capitolo 3 delle NTC2018.

14.1.1 Carichi permanenti

14.1.1.1 Pesi propri degli elementi strutturali

Per la determinazione dei pesi propri degli elementi strutturali si sono assunti i valori di riferimento riportati nella tabella 3.1.I delle NTC2018 e di seguito descritti (espressi in kN/m³):

Calcestruzzo armato	25,0
Laterizio pieno	18,0
Acciaio	78,5

14.1.1.2 Solai e copertura

Tabella 15 – Solaio in acciaio con lamiera grecata e soletta collaborante – destinazione museale

Controsoffitto	0,40	kN/m2
Travi in acciaio	0,20	kN/m2
Lamiera grecata con soletta collaborante	2,35	kN/m2
Massetto alleggerito e pavimentazione	2,85	kN/m2
G1: CARICO PERMANENTE STRUTTURALE	2,55	kN/m2
G2: CARICO PERMANENTE NON STRUTTURALE	3,25	kN/m2

Tabella 16 – Solaio in acciaio con lamiera grecata e soletta collaborante – locali tecnici

rabbila to Goldio in adolalo doll'idimora grodata o dolotta dollaboranto llocali todillo			
Controsoffitto	0,40	kN/m2	
Travi in acciaio	0,20	kN/m2	
Lamiera grecata con soletta collaborante	2,35	kN/m2	
Massetto alleggerito e pavimentazione	2,85	kN/m2	
Macchinari impiantistici * (valore medio applicato al modello di calcolo)	1,50	kN/m2	
G1: CARICO PERMANENTE STRUTTURALE	2,55	kN/m²	
G2: CARICO PERMANENTE NON STRUTTURALE	4,75	kN/m²	

Tabella 17 – Copertura in acciaio con lamiera grecata e soletta collaborante

Controsoffitto	0,40	kN/m2
Travi in acciaio	0,50	kN/m2
Lamiera grecata con soletta collaborante	2,35	kN/m2
Massetto alleggerito, guaine, isolamento e finitura	2,45	kN/m2
G1: CARICO PERMANENTE STRUTTURALE	2,85	kN/m²
G2: CARICO PERMANENTE NON STRUTTURALE	2,85	kN/m²

CASTELLO CARRARESI - INTERVENTO DI RESTAURO E
RIQUALIFICAZIONE FUNZIONALE

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	110	di	182

(*) Per quanto riguarda il carico dei macchinari impiantistici agente sul primo impalcato (locali tecnici), per la modellazione globale è stato considerato un carico medio uniformemente distribuito pari a 1,50 kN/mq, mentre per le verifiche delle singole travi di solaio sono stati applicati carichi di entità variabile in base all'effettivo carico agente.

14.1.2 Carichi accidentali

I carichi distribuiti assunti per le zone adibite a museo nelle analisi sono quelli attualmente previsti per gli "Ambienti suscettibili di grande affollamento (sale convegni, cinema, teatri, chiese, negozi, tribune con posti fissi) e relativi terrazzi a livello praticabili, balconi e scale" e sono pari a:

$$q_k = 5.00 \text{ kN/mq}$$

Nelle zone dei locali tecnici invece sono previsti i carichi per "coperture e sottotetti accessibili per sola manutenzione", pari a

$$q_k = 0.50 \text{ kN/mg}$$

Per l'individuazione dei carichi utilizzati si fa riferimento all'immagine di seguito riportata.

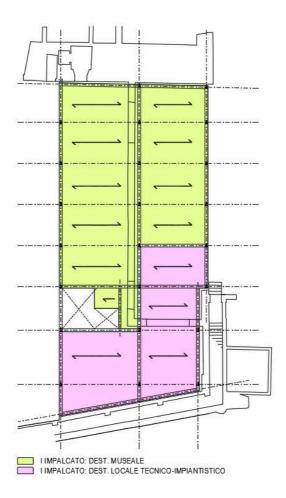
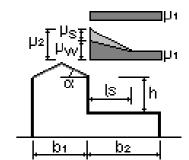


Figura 70 – Carichi accidentali: primo impalcato

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR 31 ST RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	111	di	182

Per i carichi generici da neve, vento e sisma, si faccia riferimento allo specifico paragrafo "Azioni sulle strutture".


Per quanto riguarda il carico da neve, vista la particolare conformazione geometrica e la presenza di fabbricati adiacenti di altezza superiore rispetto all'edificio in oggetto, si applica il carico dovuto all'accumulo:

Copertura adiacente al Castello

Zona Neve = II
Ce (coeff. di esposizione al vento) = 1,00
Valore caratteristico del carico al suolo = qsk Ce = 1,00 kN/mq

Coperture adiacenti o vicine a costruzioni più alte:

Angolo di inclinazione della falda 22,0° b1 = 14,0 m, b2 = 25,0 m, h = 3,5 m $\Box 1 = 0,80 \implies Q1 = 0,80 \text{ kN/mq}$ $\Box 2 = \Box s + \Box w = 0,45 + 4,00 = 4,45 \implies Q2 = 4,45 \text{ kN/mq}$ $\Box s = 7,0 \text{ m}$

Tetto piano primo impalcato

Zona Neve = II
Ce (coeff. di esposizione al vento) = 1,00
Valore caratteristico del carico al suolo = qsk Ce = 1,00 kN/mq

Coperture adiacenti o vicine a costruzioni più alte:

Angolo di inclinazione della falda 0.0° b1 = 12,0 m, b2 = 6,0 m, h = 4,5 m 1 = 0.80 = 0.00 = 0.80 = 0.00 =

14.2 VERIFICA DEGLI ELEMENTI STRUTTURALI

Per la verifica degli elementi strutturali dell'Ex lavanderia è stato fatto un modello tridimensionale della struttura con il programma di calcolo Pro-Sap della 2Si. Le strutture di fondazione sono state modellate come travi in c.a. che appoggiano su vincoli rigidi rappresentanti i pali di fondazione. Questa schematizzazione di calcolo permette di dimensionare sia le travi in c.a. che i pali con le sollecitazioni massime possibili.

I nodi travi pilastri sono stati schematizzati come cerniere, ad eccezione dei pilastri in cui convergono uno o più controventi: in tali pilastri, per facilitare le lavorazioni in cantiere, si prevede di saldare uno spezzone di travi e dei piatti di fissaggio dei controventi. Il nodo pilastro/spezzone di trave è stato consdiderato come un incastro mentre il nodo spezzone di trave/trave di solaio è una cerniera.

La struttura è stata studiata adottando il fattore di comportamento q = 1,50, considerando quindi la stessa come struttura non dissipativa in accordo con quanto riportato al par. 7.3 delle NTC2018.

CASTELLO CARRARESI - INTERVENTO DI RESTAURO E	
RIQUALIFICAZIONE FUNZIONALE	

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	112	di	182

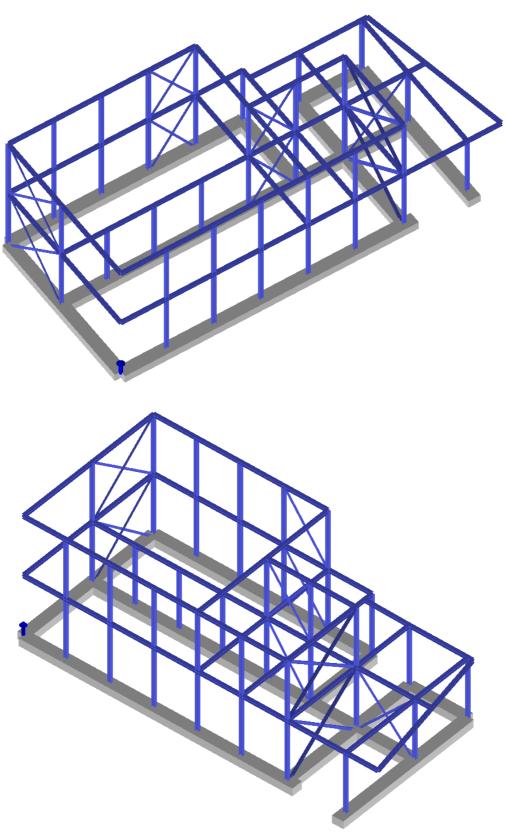


Figura 71 – Modello di calcolo agli elementi finiti

学	CASTELLO CARRARESI - INTERVENTO DI RESTAURO E	Elaborato:	APPR_31_ST_RDC		
	RIQUALIFICAZIONE FUNZIONALE	File:	APPR_31_ST_RDC.doc		
	PROGETTO ESECUTIVO	Rev.	00	del	Luglio 2018
		Pagina	113	di	182

14.2.1 Strutture in acciaio

14.2.1.1 Verifiche agli Stati Limite Ultimi (SLU + SLV)

Il programma di calcolo restituisce gli sfruttamenti delle sezioni e le diverse verifiche previste dalla normativa; come si evince dall'immagine seguente tutte le verifiche risultano soddisfatte.

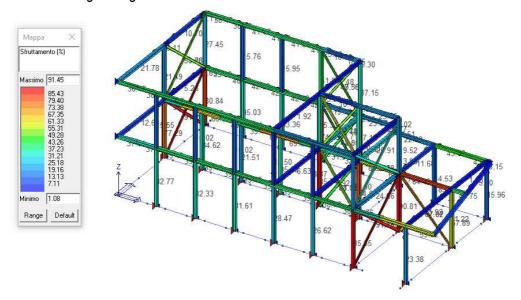


Figura 72 – Sfruttamento degli elementi in acciai: max = 91,45%

Verifica 4.2.4.1.2 V/T Permette la visualizzazione dei risultati ottenuti dalla verifica a Taglio e Torsione degli elementi espressi mediante i valori di V_{Ed}/V_{c,Rd} (oppure T_{Ed}/T_{Rd} se questa dovesse risultare più restrittiva). In presenza di torsione viene applicata la formula 4.2.25 o 4.2.26 per sezioni cave. La verifica è da considerarsi soddisfatta se il valore è inferiore a 1.

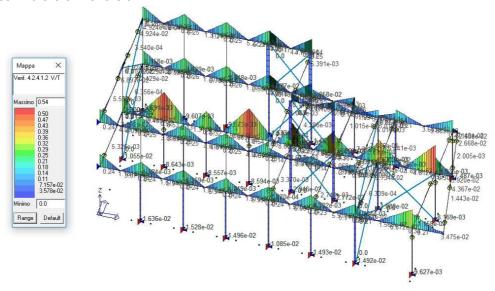


Figura 73 – Verifica a Taglio e Torsione degli elementi in acciaio: max 0,54

CASTELLO CARRARESI - INTERVENTO DI RESTAURO E	Elaborato:	APPR_31_ST_RDC		
RIQUALIFICAZIONE FUNZIONALE	File:	APPR_31_ST_RDC.doc		
PROGETTO ESECUTIVO	Rev.	00	del	Luglio 2018
RELAZIONE DI CALCOLO	Pagina	114	di	182

Verifica 4.2.4.1.2 N/M Permette la visualizzazione dei risultati ottenuti dalla verifica a flessione e forza assiale degli elementi. La verifica tiene conto del fattore di riduzione per taglio ρ (formula 4.2.41). Le formule utilizzate sono la 4.2.39 o 4.2.40, in funzione della classe della sezione. La verifica è da considerarsi soddisfatta se il valore è inferiore a 1.

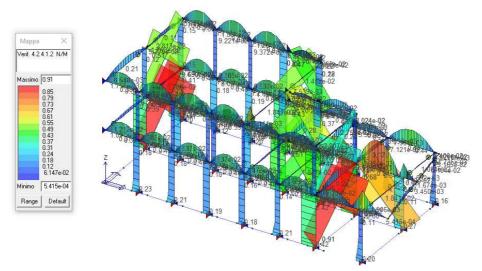


Figura 74 – Verifica a Flessione e Forza Assiale degli elementi in acciaio: max = 0,91

Verifica 4.2.4.1.3.2 Flessione Permette la visualizzazione dei risultati delle verifiche di stabilità dell'elemento soggetto a flessione, eseguite secondo la formula 4.2.49. La verifica è da considerarsi soddisfatta se il valore è inferiore a 1.

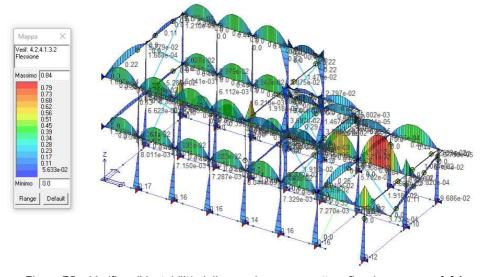


Figura 75 – Verifica di instabilità delle membrane soggette a flessione: max = 0,84

Verifica 4.2.4.1.3.3 Presso-flessione Permette la visualizzazione dei risultati delle verifiche di stabilità dell'elemento soggetto a presso-flessione, eseguite secondo il metodo A della circolare, formula C.4.2.32. La verifica è da considerarsi soddisfatta se il valore è inferiore a 1.

CASTELLO CARRARESI - INTERVENTO DI RESTAURO E
RIQUALIFICAZIONE FUNZIONALE

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	115	di	182

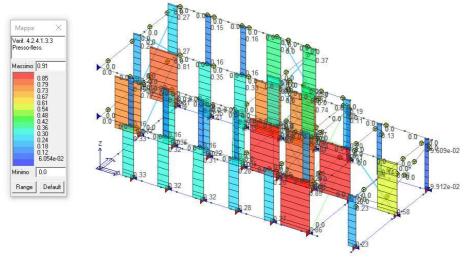


Figura 76 – Verifica di instabilità delle membrane soggette a presso-flessione: max 0,91

14.2.1.2 Verifiche agli Stati Limite di Esercizio

Di seguito si riportano le verifiche agli stati limite di esercizio.

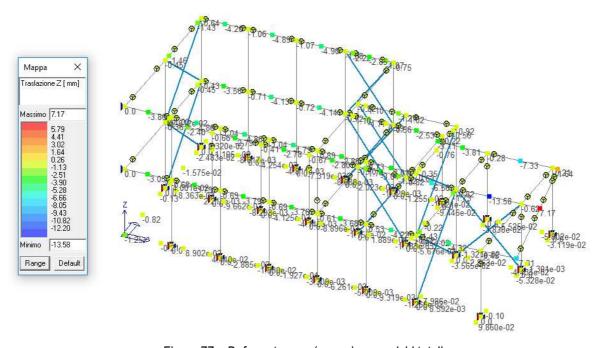
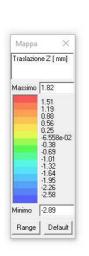


Figura 77 – Deformata max (c. rara) per carichi totali

Lo spostamento verticale massimo si registra nella zona della terrazza ad uso impiantistico e del relativo sbalzo.

Carichi totali


trave semplice appoggio $f_{max} = 13,58 \text{ mm} = L/300 < L/250 \text{ ok}$ trave sbalzo $f_{max} = 7,17 \text{ mm} = L/180 < L/125 \text{ ok}$

CASTELLO CARRARESI - INTERVENTO DI RESTAURO E
RIQUALIFICAZIONE FUNZIONALE

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	116	di	182

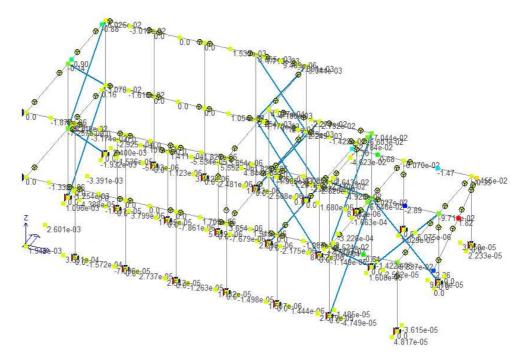


Figura 78 – Deformata max (c. rara) per carichi variabili

Carichi variabili

trave semplice appoggio $f_{max} = 2,89 \text{ mm} = L/1400 < L/300 \text{ ok}$ trave sbalzo $f_{max} = 1,82 \text{ mm} = L/700 < L/150 \text{ ok}$

Tutte le verifiche sono soddisfatte.

14.2.1.3 Verifiche agli Stati Limite di operatività - SLO

La verifica allo stato limite di danno/operatività, ai sensi del par. 7.3.6.1, è una verifica di rigidezza e si ritiene soddisfatta qualora la conseguente deformazione degli elementi strutturali non produca sugli elementi non strutturali danni tali da rendere la costruzione temporaneamente inagibile.

Per le CU III e IV ci si riferisce allo SLO (v. Tab. 7.3.III) e gli spostamenti d'interpiano devono essere inferiori ai 2/3 dei limiti di seguito indicati:

- Per tamponature collegate direttamente alla struttura (fragili) 0.005 h

Il limite massimo di interpiano è pertanto:

 $q_d = 2/3 \times 0.005 h = 15 mm$

CASTELLO CARRARESI - INTERVENTO DI RESTAURO E
RIQUALIFICAZIONE FUNZIONALE

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	117	di	182

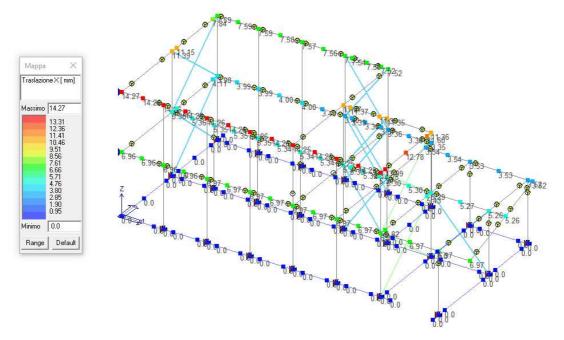


Figura 79 – Spostamenti massimi dir. X – SLO

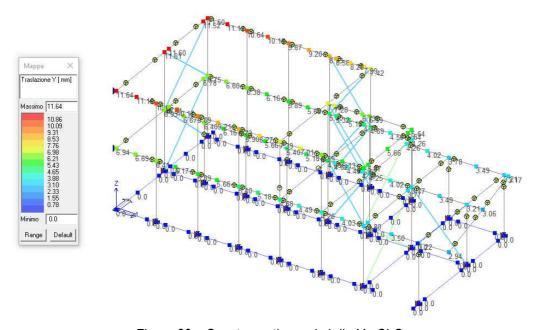
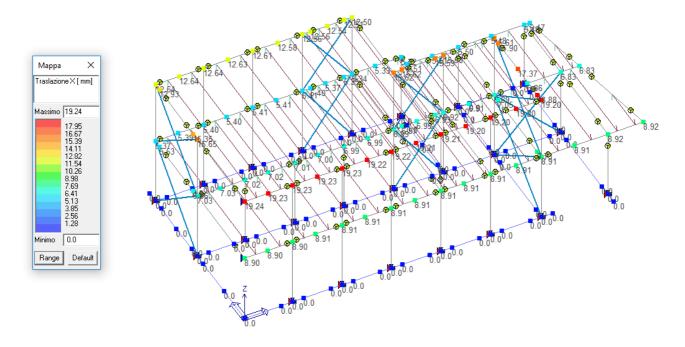


Figura 80 – Spostamenti massimi dir. Y - SLO

Lo spostamento massimo orizzontale dell'intera struttura è pari a 14,27 mm. Lo spostamento massimo di interpiano è pari a 7,34 mm < q_d . Le verifiche sono soddisfatte.

CASTELLO CARRARESI - INTERVENTO DI RESTAURO E
RIQUALIFICAZIONE FUNZIONALE


Elaborato:	APPR_31_ST_RDC					
File:	APPR_31_ST_RDC.doc					
Rev.	00	del	Luglio 2018			
Pagina	118	di	182			

14.2.1.4 Giunto sismico

Per il dimensionamento del giunto sismico si fa riferimento al par. 7.2.1 del D.M. 17.01.2018.

La distanza tra costruzioni contigue deve essere tale da evitare fenomeni di martellamento e comunque non può essere inferiore alla somma degli spostamenti massimi determinati per lo SLV, calcolati per ciascuna costruzione secondo il § 7.3.3 (analisi lineare) o il § 7.3.4 (analisi non lineare).

La distanza tra due punti di costruzioni che si fronteggiano non potrà in ogni caso essere inferiore a 1/100 della quota dei punti considerati, misurata dallo spiccato della fondazione o dalla sommità della struttura scatolare rigida di cui al § 7.2.1, moltiplicata per $2a_q$ S/g \leq 1.

Si calcola la distanza minima tra i due edifici:

$$2a_g S/g = 2 \times 0,096 \times 1,50 = 0,288$$

 $dmin = 0.01 H \times 0.288 = 25.92 mm (dove H = 9.00 m)$

Lo spostamento massimo nella combinazione SLV è pari a 25,41 mm. Lo spostamento d_E si calcola seconda la formula [7.3.8]:

$$d_E = \mu_d x d_{Ee} = 1,50 x 19,24 = 38,12 mm$$

dove
$$\mu_d = q$$

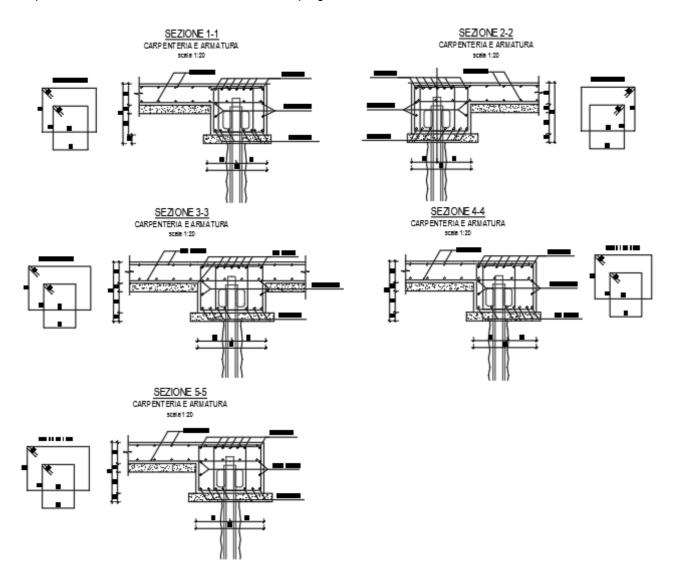
d_{Ee} è lo spostamento ottenuto dall'analisi lineare.

Lo spostamento invece dell'edificio principale del castello della zone in oggetto, al terzo livello, è stato calcolato attraverso analisi statica non lineare ed è risultato essere pari a 42,00 mm. La distanza massima del giunto è pertanto pari alla somma dei due spostamenti relativi:

$$D = 38,12 + 42,00 = 80,12 \text{ mm}.$$

Cautelativamente si decide di assumere come distanza minima tra i due edifici 10,00 cm.

CASTELLO CARRARESI - INTERVENTO DI RESTAURO E	
RIQUALIFICAZIONE FUNZIONALE	


Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	119	di	182

14.2.2 Strutture di fondazione

Le strutture di fondazione sono costituite da un reticolo di travi in c.a. collegate tra loro sostenute da micropali ø200 mm, di lunghezza variabile. A favore di sicurezza, si è assunto che l'intero carico sia assorbito dai pali, lasciando alle travi di fondazione la sola funzione di ripartizione dei carichi ed irrigidimento del livello di fondazione.

14.2.2.1 Travi in c.a.

Per la verifica di tutti gli elementi strutturali che compongono il sistema fondazionale dell'edificio è stato implementato un modello tridimensionale con il programma di calcolo PRO_SAP di 2SI.

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	120	di	182

Verifica a pressoflessione

Verifica eseguita secondo quanto riportato al paragrafo 4.1.2.3.4.2 delle NTC2018.

Verifica N/M. Il programma utilizzato permette la visualizzazione, mediante mappa di colore, dei valori massimi del rapporto S_d/S_u con sollecitazioni ultime proporzionali; il valore del rapporto deve essere minore o uguale a 1 per verifica positiva (S_d = sollecitazione di progetto, S_u = sollecitazione ultima).

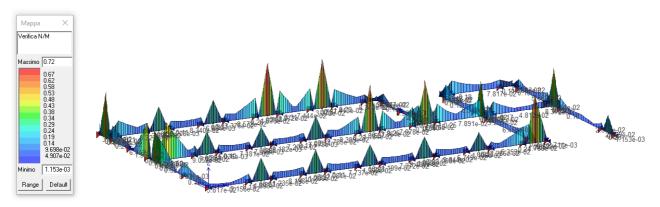


Figura 81 – Verifica N/M travi = 0,72 < 1 → verificato

Verifica nei confronti delle sollecitazioni taglianti e torcenti

Verifica eseguita secondo quanto riportato al paragrafo 4.1.2.3.5.2 delle NTC2018, riferito ad elementi con armature trasversali resistenti a taglio.

Verifica (V/T). Il programma utilizzato permette la visualizzazione, mediante mappa di colore, dei valori massimi del rapporto S_d/S_u con sollecitazioni taglianti e torcenti proporzionali; il valore del rapporto deve essere minore o uguale a 1 per verifica positiva la verifica V/T indica la verifica a taglio lato calcestruzzo (S_d = sollecitazione di progetto, S_u = sollecitazione ultima).

Il programma fornisce la verifica riferita alla resistenza della sezione di calcestruzzo e la resistenza riferita alle barre d'armatura.

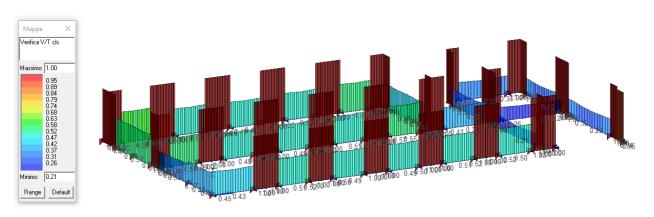


Figura 82 – Verifica V/T cls travi = $1,00 < 1 \rightarrow verificato$

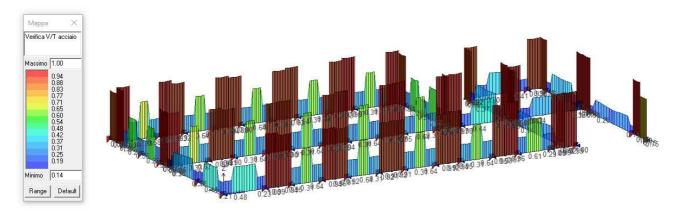


Figura 83 – Verifica V/T cls travi = 1,00 < 1 → verificato

14.2.2.2 Micropali di fondazione

Sulla base delle indicazioni riportate nella relazione geologica, sono state calcolate le portate in compressione e trazione dei micropali:

Palo	L	Portata in compressione	Portata in trazione
	[m]	[kN]	[kN]
Α	8,00	113,25	117,99
В	11,00	191,54	195,19
С	15,00	300,42	302,26

Per la verifica ed il calcolo analitica si faccia riferimento alla Relazione Geotecnica.

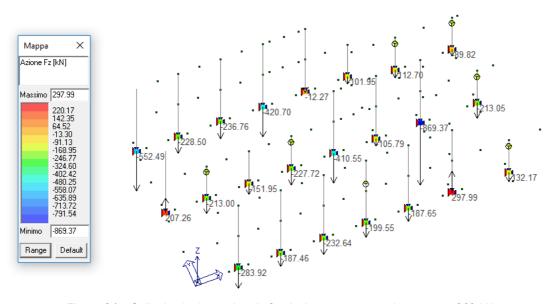


Figura 84 – Sollecitazioni massime in fondazione – compressione max = 869 kN

CASTELLO CARRARESI - INTERVENTO DI RESTAURO E
RIQUALIFICAZIONE FUNZIONALE

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	122	di	182

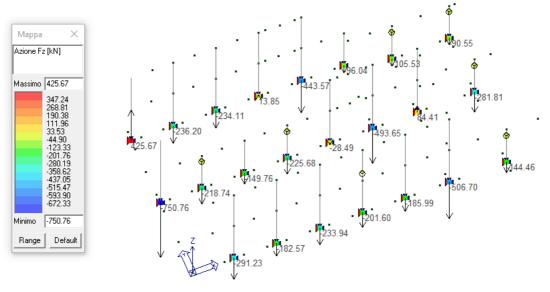
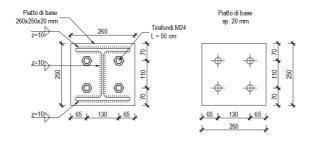


Figura 85 – Sollecitazioni massime in fondazione – trazione max = 426 kN

Per ciascun pilastro, lo sforzo agente trasmesso, sia in trazione che in compressione, è inferiore alla somma della portata dei pali afferenti allo stesso palo.

Il carico puntuale massimo agente in fondazione è pari 869 kN in compressione e 426 kN in trazione. In entrambi i casi, il carico è supportato da tre micropali di lunghezza 15,00 m. La resistenza è pertanto la seguente:


Compressione: $Rd = 3 \times 300,42 = 901,26 \text{ kN}$ > 869 kN verificato Trazione: $Rd = 3 \times 302,26 = 906,78 \text{ kN}$ > 426 kN verificato

14.2.3 Principali nodi e giunti

Si riportano nel presente paragrafo le verifiche dei principali giunti di collegamento presenti nella struttura. Per ciascuna tipologia, la verifica è eseguita nelle condizioni di carico più gravose.

Giunto di base tipo 1 (senza controventi)

PIASTRA BASE TIPO 1

CASTELLO CARRARESI - INTERVENTO DI RESTAURO E					
RIQUALIFICAZIONE FUNZIONALE					

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	123	di	182

Sollecitazioni massime:

Nsd (compressione) = -337,78 kN

 $Vsd_1 = 5,10 kN$

 $Vsd_2 = 1,91 kN$

Ancoraggio

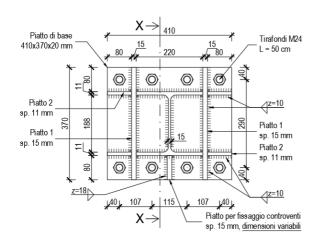
Tirafondi ad aderenza

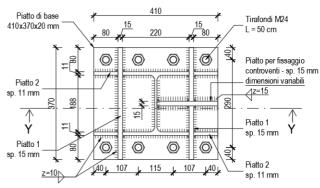
Lunghezza tirafondi $L_t = 500 \text{ mm}$

Lunghezza minima tirafondi: 40 diametri (960 mm)

Calcestruzzo

Resistenza cubica caratteristica a compressione Resistenza cilindrica caratteristica a compressione Resistenza di calcolo a compressione Resistenza caratteristica a trazione Resistenza tangenziale di aderenza di calcolo $\begin{array}{lll} R_{ck} = & 35.00 \text{ N/mm}^2 \\ f_{ck} = 0.83 \bullet R_{ck} = & 29.05 \text{ N/mm}^2 \\ f_{cd} = \mathbb{I}_{cc} \bullet f_{ck} / \gamma_C = & 16.46 \text{ N/mm}^2 \\ f_{ctk} = 0.7 \bullet 0.30 \bullet f_{ck}^{2/3} = & 1.98 \text{ N/mm}^2 \\ f_{bd} = 2.25 \bullet \mathbb{I} \bullet f_{ctk} / \gamma_C = & 3.13 \text{ N/mm}^2 \end{array}$


Compressione massima calcestruzzo


 $p_{max} = 5.19 \text{ N/mm}^2 < f_{cd} \text{ Ok}$

Verifica ancoraggio

Solo sforzo di compressione. Non necessaria.

Giunto di base tipo 2 (con controventi)

Coefficienti di sicurezza utilizzati

 $y_{M0} = 1.05$

 $y_{M1} = 1.10$

 $\dot{\gamma}_{M2} = 1.25$

Colonna

Tipo di profilo: HEA 220

Materiale: Acciaio S275 $f_v = 275 \text{ N/mm}^2$ $f_t = 430 \text{ N/mm}^2$ $y_{ov} = 1.25$

Classe sezione: 1

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	124	di	182

M3 [N mm]

4551000.0

-4755000.0

-3793000.0

5990000.0

4602000.0

-3111000.0

T [N mm]

-1684.0

1457.0

-871.0

778.0

-85.0

-1521.0

Flangia:

Materiale: Acciaio S275 $f_y = 275 \text{ N/mm}^2$ $f_t = 430 \text{ N/mm}^2$ $\gamma_{ov} = 1.25$

Dimensioni (B x H x Sp): 410.0 x 370.0 x 20.0 mm

Spessore nervature verticali: 15.0 mm Spessore nervature orizzontali: 11.0 mm

Bullonature:

Viti cl. 8.8 Dadi 8 o 10 (f_{yb} = 640 N/mm², f_{tb} = 800 N/mm²) Diametro Ø = 24 mm A_{res} = 352.9 mm² (ridotta per filettatura) Diametro foro Ø₀ = 25.5 mm

Saldature:

Sollecitazioni: Nodo.CMB

Materiale: Acciaio S275 $f_y = 275 \text{ N/mm}^2$ $f_t = 430 \text{ N/mm}^2$ $\gamma_1 = 0.70$ $\gamma_2 = 0.85$

V3 [N]

Spessore cordoni d'angolo s_c = 7 mm

V2 [N]

-1175.1

1325.1

1004.8

-1766.3

-1188.1

1020.8

46.1	-398.9	2966.3	-320500.0	-4420000.0	1138000.0	-4.5
46.2	-346.7	3123.7	-333800.0	-4867000.0	1056000.0	160.0
46.3	-264.2	1598.3	-204800.0	-2388000.0	761969.0	-0.2
46.4	-235.4	1700.4	-218100.0	-2679000.0	746129.0	112.0
46.5	-412.7	2962.8	-345000.0	-4417000.0	1167000.0	1.9
46.6	-419.0	2959.5	-354300.0	-4410000.0	1230000.0	13.0
46.7	-278.7	1594.1	-229300.0	-2384000.0	791331.0	4.8
46.8	-328.3	1710.8	-238600.0	-2714000.0	970592.0	134.0
46.13	3104.0	3310.4	-494400.0	-7159000.0	-11920000.0	2073.0
46.14	2954.0	1767.2	-195200.0	-2440000.0	-11480000.0	1206.0
46.15	-3153.2	2353.2	-552600.0	-4020000.0	12120000.0	-1224.0
46.16	-3139.5	678.5	-478900.0	1058000.0	12160000.0	-2188.0
46.17	3027.1	3093.9	-448200.0	-6495000.0	-11480000.0	1572.0
46.18	3080.0	2235.2	-224100.0	-3806000.0	-12060000.0	1918.0
46.19	-3367.5	1820.7	-537800.0	-2475000.0	13000000.0	-2005.0
46.20	-2969.3	909.0	-485100.0	354605.0	11390000.0	-1662.0
46.21	3085.4	3192.5	-447000.0	-6737000.0	-11920000.0	1582.0
46.22	2919.4	1568.7	-179300.0	-1794000.0	-11440000.0	648.0
46.23	-3170.6	2564.7	-592100.0	-4705000.0	12230000.0	-645.0
46.24	-3135.3	839.6	-492400.0	515094.0	12200000.0	-1652.0
46.25	3008.1	2976.1	-400800.0	-6073000.0	-11480000.0	1080.0
46.26	3014.0	1874.3	-187300.0	-2705000.0	-11930000.0	1223.0
46.27	-3324.5	2216.7	-554200.0	-3673000.0	12940000.0	-1271.0
46.28	-2964.6	1070.0	-498600.0	-188200.0	11430000.0	-1124.0
46.29	1321.8	4474.4	-778000.0	-10690000.0	-4730000.0	1608.0
46.30	1014.0	-143.6	-77795.1	3597000.0	-3802000.0	-712.0
46.31	-1759.9	4159.8	-732000.0	-9657000.0	5956000.0	630.0

-188400.0

-763600.0

-73061.1

-745100.0

-193300.0

-623100.0

N [N]

M2 [N mm]

46.32

46.33

46.34

46.35

46.36

46.37

-471.4

4437.7

-192.1

4194.0

-421.0

3748.7

4630000.0

3761000.0

-9780000.0

4461000.0

-8465000.0

-10560000.0

學為不		CASTELLO CARRARESI -	INTERVENTO DI REST	AURO E	Elaborato:	APPR_31_ST_RDC		
		RIQUALIFICAZIONE FUNZIONALE		File:	APPR_31_ST_RDC.doc			
	PROGETTO ESECUTIVO			Rev.	00	del	Luglio 2018	
			NE DI CALCOLO		Pagina	125	di	182
46.38	1320.0	604.1	-104200.0	13	0.00080	-5374000.0		982.0
46.39	-2247.1	3437.6	-593900.0	-74	42000.0	8193000.0		-1082.0
46.40	-519.5	301.7	-203500.0	22	74000.0	1757000.0		62.0
46.41	1024.1	3710.7	-608500.0	-83	31000.0	-3136000.0		-239.0
46.42	1309.3	555.6	-99368.0	14	72000.0	-5364000.0		823.0
46.43	-2249.1	3471.4	-607100.0	-75	64000.0	8224000.0		-934.0
46.44	-537.6	352.8	-208700.0	21	03000.0	1823000.0		226.0

Calcolo resistenze

	za a trazione dei za a punzonamer		$F_{tb,Rd} = 0.9 \cdot f_{tb} \cdot A_{res} / \gamma_{M2} = B_{pf,Rd} = 0.6 \cdot [] \cdot d_m \cdot f_f \cdot f_{tk} / \gamma_{M2} =$	203249.5 N 466865.8 N
Bull.	F _{f.Rd} [N]	F _{t.Rd} [N]	Dpt, Rd = 0.0 1 dm tr 1tk / YM2 =	1 00000.0 N
1	93108.3	93108.3		
2	93108.3	93108.3		
3	93108.3	93108.3		
4	93108.3	93108.3		

Legenda

 $F_{f,Rd} = M_{res,m} / (B_m \cdot R_m)$ resistenza a flessione flangia

 $F_{t,Rd} = min [F_{tb,Rd}, B_{pf,Rd}, F_{f,Rd}]$ resistenza a trazione di progetto

Resistenza a tag	lio dei bulloni	$F_{vb,Rd} =$	$0.6 \cdot f_{tb} \cdot A_{res} / I_{M2} =$		135499.7 N
Bull.	F _{bf,x,Rd} [N]	$F_{v,x,Rd}[N]$	$F_{bf,y,Rd}$ [N]	$F_{v,y,Rd}$ [N]	
1	196956.9	135499.7	199252.9	135499.7	
2	196956.9	135499.7	199252.9	135499.7	
3	196956.9	135499.7	199252.9	135499.7	
4	196956.9	135499.7	199252.9	135499.7	

Legenda

 $\begin{array}{l} F_{bf,x,Rd} = k \bullet \mathbb{I} \bullet f_{tk} \bullet \varnothing \bullet t_f \, / \, \mathbb{I}_{M2} \quad \text{resistenza a rifollamento flangia in direzione x} \\ F_{v,x,Rd} = min \left[\, F_{vb,Rd} \, , \, F_{bf,x,Rd} \, \right] \quad \text{resistenza a taglio di progetto in direzione x} \\ F_{bf,y,Rd} = k \bullet \mathbb{I} \bullet f_{tk} \bullet \varnothing \bullet t_f \, / \, \mathbb{I}_{M2} \quad \text{resistenza a rifollamento flangia in direzione y} \end{array}$

 $F_{v,y,Rd} = min [F_{vb,Rd}, F_{bf,y,Rd}]$ resistenza a taglio di progetto in direzione y

Verifiche sui bulloni

1-Taglio	o e trazione	(Nodo n. 46, 0	CMB n. 29)						
Bull.	X [mm]	Y [mm]	F _{v,Ed} [N]	$F_{v,Rd}$ [N]	F _{t,Ed} [N]]	$F_{t,Rd}$ [N]	FV_1	VER
1	168.50	-145.00	1167.1	135499.7	0.0)	93108.3	0.008614	Ok
2	168.50	145.00	1164.9	135499.7	0.0)	93108.3	0.008597	Ok
3	-168.50	-145.00	1167.9	135499.7	0.0)	93108.3	0.008619	Ok
4	-168.50	145.00	1165.6	135499.7	0.0)	93108.3	0.008603	Ok
2-Trazio	one (Nodo	n. 46, CMB n. 3	34)						
Bull.	X [mm]	Y [mm]	F _{t,Ed} [N]	$F_{t,Rd}$ [N]	FV_2	VER			
1	168.50	-145.00	0.0	93108.3	0.000000	Ok			
2	168.50	145.00	804.4	93108.3	0.008640	Ok			
3	-168.50	-145.00	0.0	93108.3	0.000000	Ok			
4	-168.50	145.00	0.0	93108.3	0.000000	Ok			
Legend	la								

Legenda F_{v,Ed} forza di taglio agente sul bullone

 $\mathsf{F}_{\mathsf{v},\mathsf{Rd}}$ resistenza a taglio di progetto del bullone

F_{t,Ed} forza di trazione agente sul bullone

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	126	di	182

 $F_{t,Rd}\,$ resistenza a trazione di progetto del bullone

 $FV_1 = F_{v,Ed} / F_{v,Rd} + F_{t,Ed} / (1.4 \cdot F_{t,Rd})$

 $FV_2 = F_{t,Ed} / F_{t,Rd}$ VER : $FV_i \le 1$

Verifiche sulle saldature profilo-flangia (versione beta)

Si considera la sezione di gola (avente altezza a = s_c / $2^{0.5}$ = 4.950) in posizione ribaltata: vengono considerate positive le tensioni normali di trazione e le tensioni tangenziali agenti verso destra e verso il basso. Tutte le tensioni sono espresse in N/mm².

Verifica formula (4.2.78) (Nodo n. 46, CMB n. 29)					
Cordoni (1000 11. 40, CIVIB 11. 29)	$\mathbf{n}_{\mathbb{I}}$	t ₀	$\mathbb{Q}_{\mathbb{D}}$	FV_1	VER ₁
Nerv. verticale lato destro esterno	-64.08	0.00	0.16	64.08	Ok
Nerv. vert. lato destro interno zona inferiore	-62.99	0.00	0.16	62.99	Ok
Nerv. vert. lato destro interno zona inferiore	-51.32	0.00	0.16	51.32	Ok
Nerv. verticale lato sinistro esterno	-50.24	0.00	0.16	50.24	Ok
Nerv. orizz. inferiore lato destro esterno	-65.84	0.00	0.66	65.84	Ok
Ala inferiore esterno	-54.72	0.00	0.66	54.72	Ok
Nerv. orizz. inferiore lato sinistro esterno	-47.55	0.00	0.66	47.56	Ok
Nerv. orizz. inferiore lato destro interno	-65.34	0.00	0.66	65.34	Ok
Ala inferiore interno lato destro	-60.18	0.00	0.66	60.19	Ok
Ala inferiore interno lato sinistro	-53.05	0.00	0.66	53.05	Ok
Nerv. orizz. inferiore lato sinistro interno	-47.05	0.00	0.66	47.06	Ok
Nerv. vert. lato destro interno zona centrale	-59.91	0.00	0.16	59.91	Ok
Anima lato destro	-53.73	0.00	0.16	53.73	Ok
Anima lato sinistro	-53.73	0.00	0.16	53.73	Ok
Nerv. vert. lato sinistro interno zona centrale	-48.24	0.00	0.16	48.24	Ok
Nerv. orizz. superiore lato destro interno	-59.57	0.00	0.66	59.58	Ok
Ala superiore interno lato destro	-54.42	0.00	0.66	54.42	Ok
Ala superiore interno lato sinistro	-47.28	0.00	0.66	47.29	Ok
Nerv. orizz. superiore lato sinistro interno	-41.29	0.00	0.66	41.29	Ok
Nerv. orizz. superiore lato destro esterno	-59.07	0.00	0.66	59.07	Ok
Ala superiore esterno	-47.95	0.00	0.66	47.95	Ok
Nerv. orizz. superiore lato sinistro esterno	-40.79	0.00	0.66	40.79	Ok
Nerv. vert. lato destro interno zona superiore	-53.64	0.00	0.16	53.64	Ok
Nerv. vert. lato sinistro interno zona superiore	-41.97	0.00	0.16	41.97	Ok
Verifica formula (4.2.79) (Nodo n. 46, CMB n. 29)					
Cordoni	$\mathbf{n}_{\mathbb{I}}$	$\mathbf{t}_{\scriptscriptstyle{\mathbb{D}}}$	Ω_{00}	FV_2	VER_2
Nerv. verticale lato destro esterno	-64.08	0.00	0.16	64.08	Ok
Nerv. vert. lato destro interno zona inferiore	-62.99	0.00	0.16	62.99	Ok
Nerv. vert. lato sinistro interno zona inferiore	-51.32	0.00	0.16	51.32	Ok
Nerv. verticale lato sinistro esterno	-50.24	0.00	0.16	50.24	Ok
Nerv. orizz. inferiore lato destro esterno	-65.84	0.00	0.66	65.84	Ok
Ala inferiore esterno	-54.72	0.00	0.66	54.72	Ok
Nerv. orizz. inferiore lato sinistro esterno	-47.55	0.00	0.66	47.55	Ok
Nerv. orizz. inferiore lato destro interno	-65.34	0.00	0.66	65.34	Ok
Ala inferiore interno lato destro	-60.18	0.00	0.66	60.18	Ok
Ala inferiore interno lato sinistro	-53.05	0.00	0.66	53.05	Ok
Nerv. orizz. inferiore lato sinistro interno	-47.05	0.00	0.66	47.05	Ok
Nerv. vert. lato destro interno zona centrale	-59.91	0.00	0.16	59.91	Ok
Anima lato destro	-53.73	0.00	0.16	53.73	Ok
Anima lato sinistro	-53.73	0.00	0.16	53.73	Ok

CASTELLO CARRARESI - INTERVENTO DI RESTAURO E	Elaborato:	APPR_31_ST_RDC
RIQUALIFICAZIONE FUNZIONALE	File:	APPR_31_ST_RDC.doc
PROGETTO ESECUTIVO	Rev.	00
RELAZIONE DI CALCOLO	Pagina	127

Nerv. vert. lato sinistro interno zona centrale	-48.24	0.00	0.16	48.24	Ok
Nerv. orizz. superiore lato destro interno	-59.57	0.00	0.66	59.57	Ok
Ala superiore interno lato destro	-54.42	0.00	0.66	54.42	Ok
Ala superiore interno lato sinistro	-47.28	0.00	0.66	47.28	Ok
Nerv. orizz. superiore lato sinistro interno	-41.29	0.00	0.66	41.29	Ok
Nerv. orizz. superiore lato destro esterno	-59.07	0.00	0.66	59.07	Ok
Ala superiore esterno	-47.95	0.00	0.66	47.95	Ok
Nerv. orizz. superiore lato sinistro esterno	-40.79	0.00	0.66	40.79	Ok
Nerv. vert. lato destro interno zona superiore	-53.64	0.00	0.16	53.64	Ok
Nerv. vert. lato sinistro interno zona superiore	-41.97	0.00	0.16	41.97	Ok

del

di

Luglio 2018

Legenda

- n₁ tensione normale perpendicolare all'asse del cordone
- t₁ tensione tangenziale perpendicolare all'asse del cordone
- lu tensione tangenziale parallela all'asse del cordone

$$FV_1 = (n_1^2 + t_1^2 + n_2^2)^{0.5}$$

 $FV_2 = [n_0] + [t_0]$

 $VER_i \;\; \mathbb{I} \;\; FV_i \leq \mathbb{I}_i \; \bullet \; f_{yk} \qquad (\mathbb{I}_1 \; \bullet \; f_{yk} = 192.50 \; N/mm^2 \qquad \mathbb{I}_2 \; \bullet \; f_{yk} = 233.75 \; N/mm^2)$

Verifiche a flessione piastra in zona compressa

Sezione parallela a X a filo della colonna (Nodo n. 46, CMB n. 29)

Pressione media a bordo piastra $p_{med} = 5,69 \text{ N/mm}^2$ Carico lineare sbalzo $q_{lin} = 2333,37 \text{ N/mm}$ $L_s = 80.0 \text{ mm}$ Lunghezza sbalzo

Modulo di resistenza minimo $W_{min} = 174724,5 \text{ mm}^3$

Momento resistente $M_{p,Rd} =$ 45761170,0 N mm Momento massimo $M_{p,Ed} =$ 7466790,0 N mm

 $M_{p,Ed} / M_{p,Rd} = 0,163169$ Ok

Sezione parallela a Y a filo della nervatura verticale (Nodo n. 46, CMB n. 29)

 $p_{med} = 6,23 \text{ N/mm}^2$ Pressione media a bordo piastra $q_{lin} = 2304,27 \text{ N/mm}$ Carico lineare sbalzo Lunghezza sbalzo $L_s = 80.0 \text{ mm}$

Modulo di resistenza minimo $W_{min} = 134843,4 \text{ mm}^3$

Momento resistente 35316120,0 N mm $M_{p,Rd} =$ Momento massimo $M_{p.Ed} =$ 7373678,0 N mm

 $M_{p,Ed} / M_{p,Rd} = 0,208791$ Ok

Ancoraggio

Tirafondi ad aderenza

500 mm Lunghezza tirafondi $L_t =$

Lunghezza minima tirafondi: 40 diametri (960 mm)

Calcestruzzo

Odicc3tru220		
Resistenza cubica caratteristica a compressione	R _{ck} =	30.00 N/mm ²
Resistenza cilindrica caratteristica a compressione	$f_{ck} = 0.83 \cdot R_{ck} =$	24.90 N/mm ²
Resistenza di calcolo a compressione	$f_{cd} = \mathbb{I}_{cc} \cdot f_{ck} / \mathbb{I}_{C} =$	14.11 N/mm ²
Resistenza caratteristica a trazione	$f_{ctk} = 0.7 \cdot 0.30 \cdot f_{ck}^{2/3} =$	1.79 N/mm ²
Resistenza tangenziale di aderenza di calcolo	$f_{bd} = 2.25 \cdot 0 \cdot f_{ctk} / 0_C =$	2.69 N/mm ²

CASTELLO CARRARESI - INTERVENTO DI RESTAURO E
RIQUALIFICAZIONE FUNZIONALE

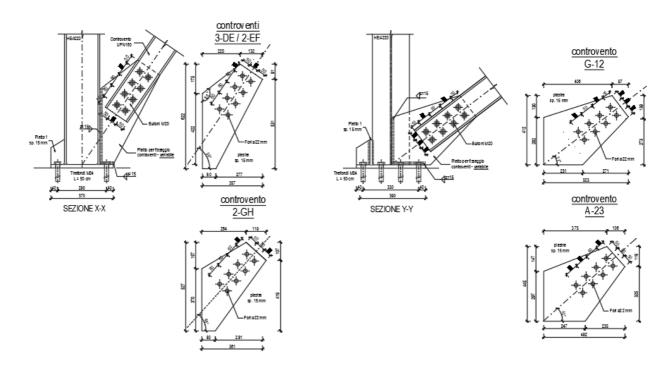
Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	128	di	182

Compressione massima calcestruzzo (Nodo n. 46, CMB n. 29)

$$p_{max} = 6.74 \text{ N/mm}^2 < f_{cd} \text{ Ok}$$

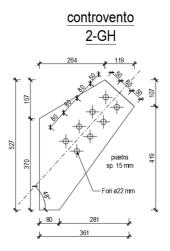
Verifica ancoraggio

Si considera la massima sollecitazione di trazione agente nei tirafondi (Nodo n. 46, CMB n. 34)


Trazione di progetto dell'ancoraggio

 $F_{t,an,Ed} = max [F_{t,Ed}] =$

Resistenza a trazione per aderenza $F_{t,ad,Rd} > F_{t,an,Ed}$ Ok


 $F_{t,ad,Rd} = L_t \cdot \mathbb{I} \cdot \emptyset \cdot f_{bd} = 101260.8 \text{ N}$

Piastre controventi di base

Si riportano le verifiche dei controventi più sollecitati in ciascuna direzione.

Controvento 2-GH Nsd = 425 kN

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	129	di	182

Bulloni in fori ordinari

UPN			Piastra			
profilo	t _w [mm]	A [mm²]	t _p [mm]	n _{file} [-]	n _{colonne} [-]	n piani taglio [-]
UPN 160	7,5	2400	15,0	2	4	1

Acciaio						
acciaio tipo	f _{tk} [MPa]	f _{yk} [MPa]				
S275	430	275				
S275	430	275				

425

N_F

Coefficienti sicurezza					
γ _{M0} 1,05					
γ_{M2}	1,25				
γ_{M3}	1,25				
γ_{M7}	1,10				

distanze	/ interassi	min	max	Verifica
[m	ım]	[mm]	[mm]	Vernica
e _{1, piastra}	50,0	25,2	-	SI
e _{1,UPN}	60,0	25,2	-	SI
e _{2,UPN}	45,0	25,2	-	SI
P ₁	80,0	46,2	105,0	SI
p ₂	70,0	50,4	105,0	SI

Caratteristiche bulloni						
М	20	classe	d ₀ [mm]	μ	k _s	β_{Lf}
non precaricati		8,8	21,0	0,45	1,00	1,000
f _{tb}	A _{res}	$F_{v,Rd}$	$F_{t,Rd}$	F _{p,C}	F _{s,Rd}	L _j
[MPa]	[mm²]	[kN]	[kN]	[kN]	[kN]	[mm]
800	245	94,08	141,12	124,73	44,90	240,0

Verifica UPN e piastra

Verifica bulloni a taglio

$F_{v.Ed} =$	53,13	≤	Fv,Rd	94,08	kN	Verifica

Verifica UPN

N _{Ed} =	425,00	≤	$N_{pl,Rd} =$	628,57	kN	Verifica
N _{Ed} =	425,00	≤	N _{u,Rd} =	645,52	kN	Verifica
N =	425.00	<	N =	640.16	kN	Verifica

Instabilità locale p₁ / t_w = -

Verifica piastra

N _{Ed} =	425,00	≤	$N_{pl,Rd} =$	1363,72	kN	Verifica
$N_{Ed} =$	425,00	≤	N _{u,Rd} =	1417,02	kN	Verifica
N _{Ed} =	425,00	≤	$N_{eff,1,Rd} =$	1234,95	kN	Verifica

bulloni di bordo			bulloni interni			
α	0,95		α	1,00		
k	2,50		k	2,50		
	•			•		
F _{b.Ed}	53,13	kN	F _{b.Rd}	122,86	kN	

Rifollamento UPN

$F_{b,Ed}/F_{b,Rd}$	0,43	Verifica
---------------------	------	----------

bulloni di bordo			bulloni interni			
α	0,79		α	1,00		
k	2,50		k	2,50		
	•			•		
$F_{b,Ed}$	53,13	kN	F _{b,Rd}	204,76	kN	

Rifollamento piastra

 $F_{b,Ed}/F_{b,Rd} = 0.26$ Verifica

Verifica saldatura su pilastro

Sollecitazioni di calcolo

T _{Ed}	α	e	T _{⊥,Ed}	N _{Ed}	T _{//,Ed}	M _{Ed}
[kN]	[°]	[mm]	[kN]	[kN]	[kN]	[kNm]
457	0	0	0	0,00	457,00	

Caratteristiche meccaniche cordone di saldatura

acciaio	f _{yk}	β ₁	β ₂	β	γ _{м2}
	[MPa]	[-]	[-]	[-]	[-]
S275	275,00	0,70	0,85	0,85	1,25

Caratterist	Caratteristiche cordone						Verifica 1			Verifica 2			
n	а	ı	Α	J	t_	n_{\perp}	t _{//}	(n_2 +	t_2 + t _{//} 2)0.5	≤ β1 fyk	n_	+ t _⊥ ≤	32 fyk
[-]	[mm]	[mm]	[mm²]	[mm ⁴]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	Verifica	[MPa]	[MPa]	Verifica
2	10,00	370	7,40E+03	8,44E+07	0,00	0,00	61,76	61,76	192,50	SI	0,00	233,75	SI

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC					
File:	APPR_31_ST_RDC.doc					
Rev.	00	del	Luglio 2018			
Pagina	130	di	182			

Controvento G-12

Nsd = 671 kN

Bulloni in fori ordinari

UPN			Piastra				
profilo	t _w [mm]	A [mm ²]	t _p [mm]	n _{file} [-]	n _{colonne} [-]	n _{piani taglio}	
UPN 180	8,0	2800	15,0	2	4	1	

Acciaio						
f _{tk}	f _{yk}					
[MPa]	[MPa]					
430	275					
	f _{tk} [MPa]					

Coefficienti sicurezza				
γ_{M0}	1,05			
γ_{M2}	1,25			
γ_{M3}	1,25			
γ _{M7} 1,10				

Limitazioni posizioni fori								
distanze	/ interassi	min	max	Verifica				
[m	[mm]		[mm]	Verrica				
e _{1,piastra}	50,0	25,2	-	SI				
e _{1,UPN}	60,0	25,2	-	SI				
e _{2,UPN}	55,0	25,2	-	SI				
P ₁	80,0	46,2	112,0	SI				
p ₂	70,0	50,4	112,0	SI				

Caratteristiche bulloni						
М	20	classe	d ₀ [mm]	μ	k _s	$\beta_{ t Lf}$
non pre	ecaricati	8,8	21,0	0,45	1,00	1,000
f_{tb}	A _{res}	$F_{v,Rd}$	$F_{t,Rd}$	F _{p,C}	F _{s,Rd}	L _j
[MPa]	[mm²]	[kN]	[kN]	[kN]	[kN]	[mm]
800	245	94,08	141,12	124,73	44,90	240,0

Verifica UPN e piastra

Verifica bulloni a taglio

$F_{v,Ed} =$	83,88	≤	Fv,Rd	94,08	kN	Verifica

Verifica UPN

$N_{Ed} =$	671,00	≤	$N_{pl,Rd} =$	733,33	kN	Verifica
N _{Ed} =	671,00	≤	$N_{u,Rd} =$	762,85	kN	Verifica
N_ =	671.00	<	N =	682.84	kN	Verifica

Instabilità locale p₁ / t_w =

Verifica piastra

$N_{Ed} =$	671,00	≤	$N_{pl,Rd} =$	1363,72	kN	Verifica
N _{Ed} =	671,00	≤	N _{u,Rd} =	1417,02	kN	Verifica
N _{Ed} =	671,00	≤	$N_{eff,1,Rd} =$	1234,95	kN	Verifica

bu	bulloni di bordo			bulloni interni			
α	0,95		α	1,00			
k	2,50		k	2,50			
	•			•	-		
$F_{b,Ed}$	83,88	kN	F _{b,Rd}	131,05	kN		

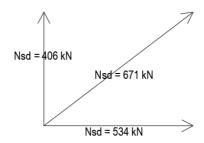
Rifollamento UPN

$F_{\mathrm{b},\mathrm{Ed}}/F_{\mathrm{b},\mathrm{Rd}}$	0,64	Verifica
---	------	----------

bu	ılloni di bor	do	bulloni interni			
α	0,79		α	1,00		
k	2,50		k	2,50		
	•		-	•		
$F_{b,Ed}$	83,88	kN	$F_{b,Rd}$	204,76	kN	

Rifollamento piastra

 $F_{b,Ed}/F_{b,Rd}$ 0,41 Verifica



PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	131	di	182

Verifica saldature su pilastro

Sollecitazioni di calcolo

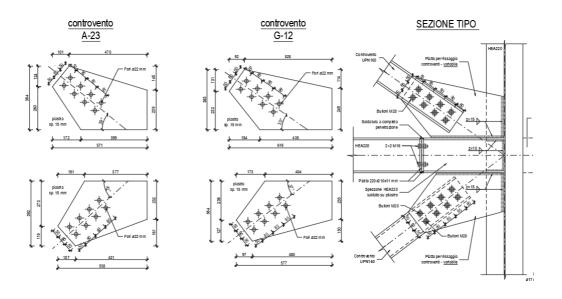
T _{Ed}	α	е	T _{⊥,Ed}	N_{Ed}	T _{//,Ed}	M_{Ed}
[kN]	[°]	[mm]	[kN]	[kN]	[kN]	[kNm]
406	0	0	0	0,00	406,00	0,00

Caratteristiche meccaniche cordone di saldatura

acciaio	f _{yk}	β ₁	β ₂	β	γ _{м2}
	[MPa]	[-]	[-]	[-]	[-]
S275	275,00	0,70	0,85	0,85	1,25

Caratterist	Caratteristiche cordone									Verifica 1		Verifica 2	
n _{cordoni}	а	ı	Α	J	t_{\perp}	n_{\perp}	t _{//}	$(n_{\perp}^2 + t_{\perp}^2 + t_{ }^2)^{0.5} \le \beta_1 f_{yk}$		$(n_{\perp}^{2} + t_{\perp}^{2} + t_{\parallel}^{2})^{0.5} \le \beta_1 f_{yk}$		+ t __ ≤∫	32 f yk
[-]	[mm]	[mm]	[mm ²]	[mm ⁴]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	Verifica	[MPa]	[MPa]	Verifica
2	10,00	280	5,60E+03	3,66E+07	0,00	0,00	72,50	72,50	192,50	SI	0,00	233,75	SI

Sollecitazioni di calcolo

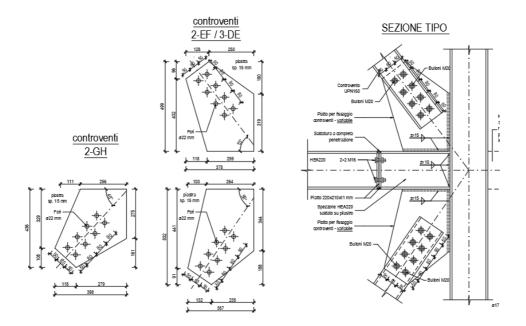

	T _{Ed}	α	e	T _{⊥,Ed}	N _{Ed}	T _{//,Ed}	M _{Ed}
	[kN]	[°]	[mm]	[kN]	[kN]	[kN]	[kNm]
ĺ	534	0	0	0	0,00	534,00	0,00

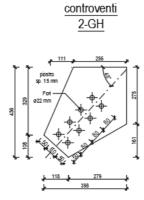
Caratteristiche meccaniche cordone di saldatura

acciaio	f _{yk}	β ₁	β ₂	β	γ _{M2}
	[MPa]	[-]	[-]	[-]	[-]
S275	275,00	0,70	0,85	0,85	1,25

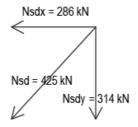
Caratterist	Caratteristiche cordone								Verifica 1		Verifica 2		
n _{cordoni}	а	1	Α	J	t⊥	n_{\perp}	t _{//}	(n_2+	t_2 + t _{//} 2) ^{0.5}	≤ β1 fyk	n_	+ t __ ≤∫	32 f yk
[-]	[mm]	[mm]	[mm²]	[mm ⁴]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	Verifica	[MPa]	[MPa]	Verifica
2	10,00	230	4,60E+03	2,03E+07	0,00	0,00	116,09	116,09	192,50	SI	0,00	233,75	SI

Piastre controventi elevazione




PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	132	di	182



Si riportano le verifiche dei controventi più sollecitati in ciascuna direzione.

Controvento 2-GH Nsd = 425 kN

Verifica saldature su pilastro - trave

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	133	di	182

Sollecitazioni di calcolo

T _{Ed}	α	e	T _{⊥,Ed}	N _{Ed}	T _{//,Ed}	M _{Ed}
[kN]	[°]	[mm]	[kN]	[kN]	[kN]	[kNm]
286	0	0	0	0,00	286,00	

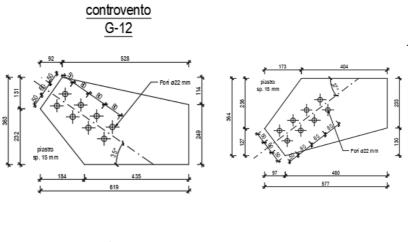
Caratteristiche meccaniche cordone di saldatura

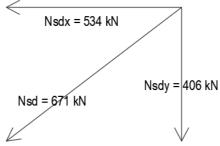
acciaio	f yk [MPa]	β ₁ [-]	β ₂ [-]	β [-]	γ _{м2} [-]
S275	275,00	0,70	0,85	0,85	1,25

Caratterist	Caratteristiche cordone						Verifica 1			Verifica 2			
n	а	I	Α	J	t_{\perp}	n_{\perp}	t,,	(n_2+	t_2 + t _{//} 2)0.5	≤ β ₁ f _{yk}	n __	+ t __ ≤∫	32 fyk
[-]	[mm]	[mm]	[mm ²]	[mm ⁴]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	Verifica	[MPa]	[MPa]	Verifica
2	10,00	240	4,80E+03	2,30E+07	0,00	0,00	59,58	59,58	192,50	SI	0,00	233,75	SI

Sollecitazioni di calcolo

T _{Ed}	α	e	T _{,Ed}	N _{Ed}	T _{//,Ed}	M _{Ed}
[kN]	[°]	[mm]	[kN]	[kN]	[kN]	[kNm]
314	0	0	0	0,00	314,00	


Caratteristiche meccaniche cordone di saldatura


acciaio	f _{yk}	β ₁	β ₂	β	γ _{м2}
	[MPa]	[-]	[-]	[-]	[-]
S275	275,00	0,70	0,85	0,85	1,25

Caratterist	Caratteristiche cordone							Verifica 1			Verifica 2		
n _{cordoni}	а	- 1	Α	J	t_	n_{\perp}	t _{//}	(n_2+	t_2 + t _{//} 2)0.5	≤ β_1 f _{yk}	n __	+ t _⊥ ≤	32 fyk
[-]	[mm]	[mm]	[mm ²]	[mm ⁴]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	Verifica	[MPa]	[MPa]	Verifica
2	10,00	310	6,20E+03	4,97E+07	0,00	0,00	50,65	50,65	192,50	SI	0,00	233,75	SI

Controvento G-12

Nsd = 671 kN

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC						
File:	APPR_31_ST_RDC.doc						
Rev.	00	del	Luglio 2018				
Pagina	134	di	182				

Sollecitazioni di calcolo

T _{Ed}	α	e	T _{⊥,Ed}	N _{Ed}	T _{//,Ed}	M _{Ed}
[kN]	[°]	[mm]	[kN]	[kN]	[kN]	[kNm]
534	0	0	0	0,00	534,00	

Caratteristiche meccaniche cordone di saldatura

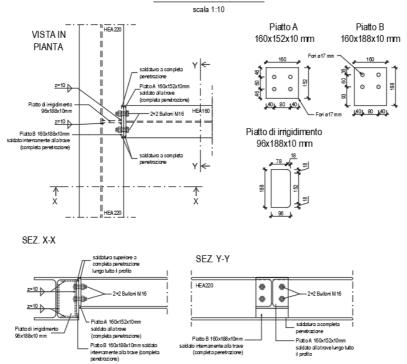
acciaio	f _{yk}	β ₁	β ₂	β	γ _{м2}
	[MPa]	[-]	[-]	[-]	[-]
S275	275,00	0,70	0,85	0,85	1,25

C	Caratteristiche cordone							Verifica 1			Verifica 2			
	n _{cordoni}	а	I	Α	J	t_{\perp}	n_{\perp}	t,,	(n_2+	t_L ² + t _{//} ²) ^{0.5}	≤ β ₁ f _{yk}	n_	+ t __ ≤∫	32 fyk
	[-]	[mm]	[mm]	[mm ²]	[mm ⁴]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	Verifica	[MPa]	[MPa]	Verifica
	2	10,00	430	8,60E+03	1,33E+08	0,00	0,00	62,09	62,09	192,50	SI	0,00	233,75	SI

Sollecitazioni di calcolo

T _{Ed}	α	e	T _{⊥,Ed}	N _{Ed}	T _{//,Ed}	M _{Ed}
[kN]	[°]	[mm]	[kN]	[kN]	[kN]	[kNm]
406	0	0	0	0,00	406,00	

Caratteristiche meccaniche cordone di saldatura


acciaio	f _{yk}	β ₁	β ₂	β	γ _{м2}
	[MPa]	[-]	[-]	[-]	[-]
S275	275,00	0,70	0,85	0,85	1,25

Caratterist	Caratteristiche cordone							Verifica 1			Verifica 2		
n _{cordoni}	а	- 1	Α	J	t_{\perp}	n_{\perp}	t _{//}	(n_1 2+1	t_2 + t _{//} 2)0.5	≤ β_1 f _{yk}	n __	+ t __ ≤∫	32 fyk
[-]	[mm]	[mm]	[mm²]	[mm ⁴]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	Verifica	[MPa]	[MPa]	Verifica
2	10,00	250	5,00E+03	2,60E+07	0,00	0,00	81,20	81,20	192,50	SI	0,00	233,75	SI

Nodo TRAVE HEA160

Vsd = 71 kN

PARTICOLARE TIPO A

NIQUALII IOAZIONET UNZIONAL

Elaborato:	APPR_31_ST_RDC						
File:	APPR_31_ST_RDC.doc						
Rev.	00	del	Luglio 2018				
Pagina	135	di	182				

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

acciaio	В	Н	t _p	f _{tk}	f _{yk}
	[mm]	[mm]	[mm]	[MPa]	[MPa]
S275	160,00	152,00	10,00	430	275

Sollecitazione di calcolo

V _{Ed}	M _{Ed}	e _v	M _{Ed,tot}
[kN]	[kNm]	[mm]	
70	0	0	0,00

Coefficienti sicurezza

γ_{M0}	1,05
γ_{M2}	1,25
γ_{M3}	1,25
γ_{M7}	1,10

Caratterist	iche bulloni			M	16	classe	8,8	
					non precaricati		μ=	0,45
n piani taglio	d ₀	d _m	f _{tb}	A _{res}	F _{v,Rd}	F _{t,Rd}	F _{p,C}	F _{s,Rd}
[-]	[mm]	[mm]	[MPa]	[mm ²]	[kN]	[kN]	[kN]	[kN]
1	17	24	800	157	60,29	90,43	79,93	28,77

Pro	ofilo	HE 160 A		
h b		ţ	t _w	
[mm]	[mm]	[mm]	[mm]	
152,00	160,00	9,00	6,00	

Valutazione dello stato tensionale indotto dal momento flettente (IPO: campo elastico)

E _s / E _c	n _{file}	n _{bul per fila}	e ₁	P ₁	e ₂	Х	J	$\sigma_{\!\scriptscriptstyle C}$	$F_{t,Ed}$
[-]	[-]	[-]	[mm]	[mm]	[mm]	[mm]	[mm ⁴]	[MPa]	[kN]
1	2	2	50,00	52,00	40,00	20,81	2,82E+06	0,00	0,00

<u>Verifiche piastra</u> $(f_{yd} = 261,90 \text{ MPa})$

Verifica a rifollamento

bulloni di bordo			bulloni interni			
α	0,98		α	0,77		
k	2,50		k	2,50		
F _{b,Ed}	17,50	kN	F _{b,Ed}	17,50	kN	
F _{b,Rd}	134,90	kN	F _{b,Rd}	105,90	kN	
F _{b,Ed} /F _{b,Rd}	0,13	SI	F _{b,Ed} /F _{b,Rd}	0,17	SI	

Limitazioni posizioni fori

distanze	min	max	Verifica
interassi	[mm]	[mm]	veniica
e ₁	20,40	-	SI
e ₂	20,40	-	SI
P ₁	37,40	-	SI

Verifica a punzonamento

bullone più sollecitato			bullone interno più sollecitato		
$B_{p,Ed}$	0,00	kN	$B_{p,Ed}$	-	kN
$B_{p,Rd}$	155,62	kN	$B_{p,Rd}$	-	kN
B _{p.Ed} /B _{p.Rd}	0,00	SI	$B_{p,Ed}/B_{p,Rd}$	-	SI

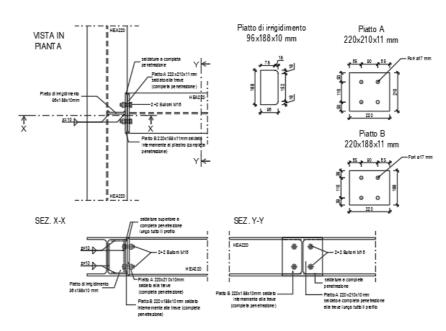
Verifica piastra in corrispondenza del bullone più sollecitato

	mensola 1	·	mensola 2			
l ₁	l ₁ 41,00 mm			37,00	mm	
b _{eff,1}	82,00	mm	b _{eff,2}	74,00	mm	
σ_1	0,00	MPa	σ_2	0,00	MPa	
σ_1 / f_{yd}	0,00	SI	σ_2 / f_{vd}	0,00	SI	

Verifica piastra interna al profilo

l ₃	b _{eff,3}	σ_3	f _{yd}	σ_3 / f_{yd}	Verifica
[mm]	[mm]	[MPa]	[MPa]	[-]	$\sigma_3 \leq f_{vd}$
-	- 1	-	261,90	-	-

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO


Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	136	di	182

Nodo TRAVE HEA220

Vsd = 167 kN

PARTICOLARE TIPO B

scala 1:10

Caratteristiche piastra

acciaio	В	Н	t _p	f _{tk}	f yk
	[mm]	[mm]	[mm]	[MPa]	[MPa]
S275	220,00	210,00	11,00	430	275

Sollecitazione di calcolo

V _{Ed}	M _{Ed}	e _v	M _{Ed,tot}
[kN]	[kNm]	[mm]	[kNm]
167	0	0	0,00

Coefficienti sicurezza

γ_{M0}	1,05
γ_{M2}	1,25
γ_{M3}	1,25
γ_{M7}	1,10

Caratterist	iche bulloni			М	16	classe	8,8	
				non precaricati		μ=	0,45	
n piani taglio	d ₀	d _m	f _{tb}	A _{res}	F _{v,Rd}	F _{t,Rd}	F _{p,C}	F _{s,Rd}
[-]	[mm]	[mm]	[MPa]	[mm ²]	[kN]	[kN]	[kN]	[kN]
1	17	24	800	157	60,29	90,43	79,93	28,77

Pro	ofilo	HE 220 A		
h	b	ţ	t _w	
[mm]	[mm]	[mm]	[mm]	
210,00	220,00	11,00	7,00	

Valutazione dello stato tensionale indotto dal momento flettente (IPO: campo elastico)

E _s / E	n _{file}	n _{bul per fila} [-]	e ₁ [mm]	P ₁ [mm]	e ₂ [mm]	x [mm]	J [mm ⁴]	$\sigma_{\!\scriptscriptstyle c}$ [MPa]	F _{t,Ed} [kN]
1	2	2	50,00	110,00	50,00	20,81	7,01E+06	0,00	0,00

Verifiche piastra (f_{vd} = 261,90 MPa)

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	137	di	182

Verifica a rifollamento

bulloni di bordo			bulloni interni		
α	0,98		α	1,00	
k	2,50		k	2,50	
F _{b,Ed}	41,75	kN	$F_{b,Ed}$	41,75	kN
$F_{b,Rd}$	148,39	kN	F _{b,Rd}	151,36	kN
F _{h Ed} /F _{h Rd}	0,28	SI	F_{hEd}/F_{hRd}	0,28	SI

Verifica a punzonamento

bullone più sollecitato			bullone interno più sollecitato		
$B_{p,Ed}$	0,00	kN	$B_{p,Ed}$	-	kN
$B_{p,Rd}$	171,18	kN	$B_{p,Rd}$	-	kN
$B_{p,Ed}/B_{p,Rd}$	0,00	SI	$B_{p,Ed}/B_{p,Rd}$	ı	SI

Verifica piastra interna al profilo

l ₃	b _{eff,3}	σ_3	f _{yd}	σ_3 / f_{yd}	Verifica
[mm]	[mm]	[MPa]	[MPa]	[-]	$\sigma_3 \leq f_{yd}$
-	- 1	-	261,90	-	-

Limitazioni posizioni fori

distanze	min	max	Verifica
interassi	[mm]	[mm]	Vernica
e ₁	20,40	-	SI
e ₂	20,40	-	SI
P ₁	37,40	-	SI

Verifica piastra in corrispondenza del bullone più sollecitato

	mensola 1		mensola 2					
l ₁	l ₁ 39,00 mm		l ₂	56,50	mm			
b _{eff,1} 78,00 mm		mm	b _{eff,2}	113,00	mm			
σ_1	0,00	MPa	σ_2	0,00	MPa			
σ_1 / f_{yd}	0,00	SI	σ_2 / f_{yd}	0,00	SI			

14.2.4 Solai

I nuovi solai (interpiano e di copertura) dell'edificio ex-lavanderia vengono previsti in putrelle e lamiera grecata con getto collaborante, di seguito si riportano le verifiche eseguite.

14.2.4.1 Solaio piano terra-piano primo

Il nuovo solaio interpiano dell'ex-lavanderia viene realizzato con profili HEA 160, lamiera grecata trasversale alle putrelle e getto collaborante spessore 12 cm, armatura superiore Ø 6 maglia 18x18 cm, interasse tra le putrelle pari a 154 cm. La forma particolare dell'edificio e la presenza di strutture preesistenti, determinano comunque una serie di interassi variabili, nello specifico in prossimità del castello Carrarese e nella porzione adibita agli impianti tecnici (porzione ad un unico livello, con tetto piano utilizzato per il posizionamento delle macchine impiantistiche). La presenza di interassi e sovraccarichi accidentali diversi, comporta l'esigenza di verificare più configurazioni di carico per valutare le situazioni più gravose e per uniformare l'intervento. Il solaio sulla porzione interna presenta una massetto alleggerito per il passaggio degli impianti (1200kg/mc) ed un massetto di finitura, mentre la porzione a tetto piano presenta uno strato di isolamento termico, un masseto alleggerito di pendenza (per lo scolo delle acque meteoriche) ed una impermeabilizzazione.

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	138	di	182

Verifica HEA160 - luce=5,87 metri - interasse 1,54 metri

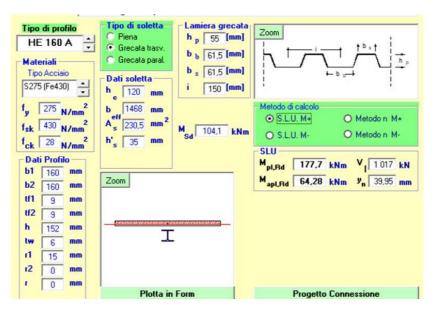
Di seguito vengono riportate le combinazioni di carico e le sollecitazioni.

COMBINAZIONI DI CARICO		
Permanente str. (IPE+solaio) G ₁ =	3,92	kN/m
Permanente non str. G ₂ =	5,01	kN/m
Carichi variabili Resid. Q _k =	7,70	kN/m
	SLU comb 1:	
$g_{G1}^*G_1+g_{G2}^*G_2+g_{G2}^*g_{2k tramezzi}^*+g_Q^*Q_{k1}$	24,16	kN/m
g _{G1} *G ₁ +g _{G2} *G ₂ +g _Q *Q _{k1}		
	SLE q.p.:	
$G_1+G_2+g_2+y_{21}*Q_{k1}$	13,55	kN/m
SOLLECITAZIONI		
$M_{ed} =$	104,05	kNm
T _{ed} =	70,90	kN

Verifica fase 1

Permanente str. (IPE+solaio) G ₁ =	3,92	kN/m						
Carichi variabili manutenzione $Q_k =$	0,75	kN/m	carichi da c	costruzione i	n conform	nità al §4.11.2	– EN 1991-1-	6
	SLU comb 1:							
$g_{G1}^*G_1+g_Q^*Q_{k1}$	6,22	kN/m						
	SLE q.p.:							
G ₁ + y ₂₁ *Q _{k1}		kN/m						
SOLLECITAZIONI								
SOLLEGITY ETOTAL								
M _{ed} =	26,81		Mrd trave	64,19	kN	verificato		
T _{ed} =	18,27		Trd trave	199,75	kN	verificato		

Verifica di resistenza e deformabilità - dimensionamento dei connettori (pioli Nelson)


Per il calcolo del momento resistente della sezione collaborante viene utilizzato il programma "profili" del Prof. Gelfi: M_{Sd} =104,05 kNm < $M_{pl,Rd}$ = 177,7kNm.

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	139	di	182

Il passo dei connettori considerato l'inserimento della lamiera grecata con nervature trasversali, può assumere valori costanti multipli di 150 mm. Utilizzando connettori diametro 19 mm e altezza 85 mm, il completo ripristino non è realizzabile in quanto il passo dei connettori risulta inferiore ai 150 mm (si evidenzia che il completo ripristino non risulta nemmeno necessario con riferimento alle sollecitazioni in gioco).

Si prevede quindi la realizzazione di una connessione a parziale ripristino, atta a garantire il momento sollecitante M_{Sd} =104,5 kNm, tale momento viene garantito prevedendo un n°di connettori minimo pari a 40 (passo 150 mm), tenuto conto delle considerazioni sopra esposte si prevede quindi di inserire un connettore su ogni greca della lamiera: M_{Sd} =104,05 kNm < $M_{Pl,Rd}$ = 151kNm

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	140	di	182

Di seguito si riporta la tabellina riassuntiva con le verifiche di resistenza e deformabilità.

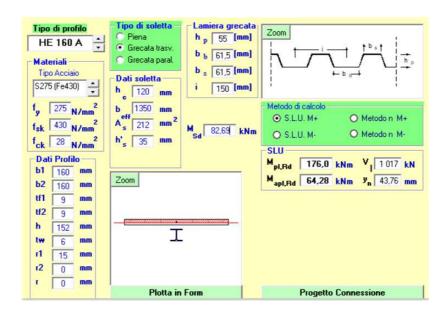
VERIFICHE								
Verifica di resistenza				M _{apl,Rd} =	64,28	kNm		
		$M_{sd} > M_{pl,Rd}$		M _{sd} =	104,05	kNm		
				M _{pI,Rd} =	177,7	kNm	VERIFICATO	completo ripristino
Verifica di deformabilità					59	%		
				M _{pl,Rd} =	151	kNm	VERIFICATO	parziale ripristino
Momento di inerzia sezione omogeneizz	zata all'acciaio				69	%		
Asse neutro x = y _{n (in Gelfi progr)}	39,95							
J acciaio =	16730000	mm ⁴						
A acciaio =	3877	mm ²						
h profilo =	152	mm						
b eff =	1468	mm						
h _c =	120	mm						
x =	39,95	mm						
$J cls = b_{eff} h_c^3 / 12 =$	211392000	mm ⁴						
n =	14,00							
A _c =	176160	mm ²						
J _{id} =	11337							
N _{max} =	250							
δ_{max}	8,8	mm						
δ_{lim} = L/N $_{max}$ =	23,5							
	$\delta_{\text{max}} < L/N_{\text{max}}$		VERIFICATO	%	37			
N ₂ =	350							
δ_2	5,0	mm						
δ_{lim} = L/N $_2$ =	16,8							
	δ ₂ < L/N ₂		VERIFICATO	%	30			

<u>Verifica HEA160 - luce=5,87 metri - interasse 1,35 metri - neve 2kN/mg + impianti 2kN/mg</u>

Di seguito vengono riportate le combinazioni di carico e le sollecitazioni.

COMBINAZIONI DI CARICO		
Permanente str. (IPE+solaio) G ₁ =	3,48	kN/m
Permanente non str. G ₂ =	7,09	kN/m
Carichi variabili Resid. Q _k =	2,70	kN/m
	SLU comb 1:	
$g_{G1}*G_1+g_{G2}*G_2+g_{G2}*g_{2k tramezzi}+g_Q*Q_{k1}$	19,20	kN/m
$g_{G1}^*G_1+g_{G2}^*G_2+g_{Q}^*Q_{k1}$		
	SLE q.p.:	
G ₁ +G ₂ + g ₂ + y ₂₁ *Q _{k1}	10,56	kN/m
SOLLECITAZIONI		
M _{ed} =	82,69	kNm
T _{ed} =	56,35	kN

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO


Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	141	di	182

Verifica fase 1

Permanente str. (IPE+solaio) G ₁ =	3,48	kN/m					
Carichi variabili manutenzione Q_k =	0,75	kN/m	carichi da d	ostruzione ii	n conform	nità al §4.11.2	– EN 1991-1-6
	SLU comb 1:						
g _{G1} *G ₁ +g _Q *Q _{k1}	5,64	kN/m					
	SLE q.p.:						
G ₁ + y ₂₁ *Q _{k1}		kN/m					
SOLLECITAZIONI							
M _{ed} =	24,31		Mrd trave	64,19	kN	verificato	
T _{ed} =	16,56		Trd trave	199,75	kN	verificato	

Verifica di resistenza e deformabilità - dimensionamento dei connettori (pioli Nelson)

Per il calcolo del momento resistente della sezione collaborante viene utilizzato il programma "profili" del Prof. Gelfi: M_{Sd} =82,69 kNm < $M_{pl,Rd}$ = 176,0 kNm.

Il passo dei connettori considerato l'inserimento della lamiera grecata con nervature trasversali, può assumere valori costanti multipli di 150 mm. Utilizzando connettori diametro 19 mm e altezza 85 mm, il completo ripristino non è realizzabile in quanto il passo dei connettori risulta inferiore ai 150 mm (si evidenzia che il completo ripristino non risulta nemmeno necessario con riferimento alle sollecitazioni in gioco).

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	142	di	182

Si prevede quindi la realizzazione di una connessione a parziale ripristino, atta a garantire il momento sollecitante M_{Sd} =82,69 kNm, tale momento viene garantito prevedendo un n°di connettori minimo pari a 40 (passo 150 mm), tenuto conto delle considerazioni sopra esposte si prevede quindi di inserire un connettore su ogni greca della lamiera: M_{Sd} =104,05 kNm < $M_{pl,Rd}$ = 148 kNm

Di seguito si riporta la tabellina riassuntiva con le verifiche di resistenza e deformabilità.

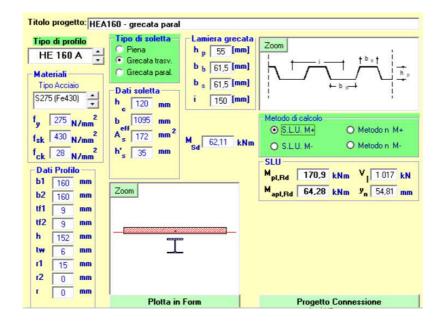
VERIFICHE									
Verifica di resistenza				M _{apl,Rd} =	64,28	kNm			
		$M_{sd} > M_{pl,Rd}$		M _{sd} =	82,69	kNm			
				M _{pl,Rd} =	176	kNm	VERIFICATO	completo rij	oristino
Verifica di deformabilità					47	%			
				M _{pl,Rd} =	148	kNm	VERIFICATO	parziale ripr	stino
Momento di inerzia sezione omogeneizz	zata all'acciaio				56	%			
Asse neutro x = y _{n (in Gelfi progr)}	43,76	mm							
J acciaio =	16730000	mm ⁴							
A acciaio =	3877	mm ²							
h profilo =	152	mm							
b eff =	1350	mm							
$h_c =$	120	mm							
x =	43,76	mm							
$J cls = b_{eff} h_c^3 / 12 =$	194400000	mm ⁴							
n =	14,00								
$A_c =$	162000	mm ²							
J _{id} =	10928	cm ⁴							
N _{max} =	250								
δ_{max}	7,1	mm							
δ_{lim} = L/N $_{max}$ =	23,5								
	$\delta_{max} < L/N_{max}$		VERIFICATO	%	30				
N ₂ =	350								
δ_2	1,8	mm							
$\delta_{lim} = L/N_2 =$	16,8								
	$\delta_2 < L/N_2$		VERIFICATO	%	11				

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC					
File:	APPR_31_ST_RDC.doc					
Rev.	00	del	Luglio 2018			
Pagina	143	di	182			

<u>Verifica HEA160 - luce=4,38 metri - interasse 1,64 metri – neve 2kN/mq + impianti 4kN/mq (su impronta limitata della macchina)</u>

Di seguito vengono riportate le sollecitazioni.


SOLLECITAZIONI		
M _{ed} =	62,11	kNm
T _{ed} =	52,71	kN

Verifica fase 1

Permanente str. (IPE+solaio) G ₁ =	4,16	kN/m						
Carichi variabili manutenzione Q_k =	0,75	kN/m	carichi da c	ostruzione ii	n conform	nità al §4.11.2	– EN 1991-1-6	3
	SLU comb 1:							
g _{G1} *G ₁ +g _Q *Q _{k1}	6,53	kN/m						
	SLE q.p.:							
G ₁ + y ₂₁ *Q _{k1}		kN/m						
SOLLECITAZIONI								
M _{ed} =	15,66		Mrd trave	64,19	kN	verificato		
T _{ed} =	14,30		Trd trave	199,75	kN	verificato		

Verifica di resistenza e deformabilità - dimensionamento dei connettori (pioli Nelson)

Per il calcolo del momento resistente della sezione collaborante viene utilizzato il programma "profili" del Prof. Gelfi: M_{Sd} =62,11 kNm < $M_{pl,Rd}$ = 170,9 kNm.

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC				
File:	APPR_31_ST_RDC.doc				
Rev.	00	del	Luglio 2018		
Pagina	144	di	182		

Il passo dei connettori considerato l'inserimento della lamiera grecata con nervature trasversali, può assumere valori costanti multipli di 150 mm. Si evidenzia che in base alle sollecitazioni in gioco i connettori non risultano necessari per la verifica a resistenza e che il completo ripristino non risulta realizzabile in quanto il passo risulta inferiore ai 150 mm; si prevede comunque di uniformare l'intervento realizzando un parziale ripristino, prevedendo l'inserimento dei connettori con passo 150 mm (connettori diametro 19 mm, altezza 85 mm): M_{Sd} =64,28 kNm < $M_{pl,Rd}$ = 128 kNm.

Di seguito si riporta la tabellina riassuntiva con le verifiche di resistenza e deformabilità.

	$\delta_2 < L/N_2$		VERIFICATO	%	6				
δ_{lim} = L/N $_2$ =	12,5								
δ_2	0,8	mm							
N ₂ =	350								
	$\delta_{\text{max}} < L/N_{\text{max}}$		VERIFICATO	%	13				
δ_{lim} = L/N _{max} =	17,5								
δ_{max}	2,2	mm							
N _{max} =	250								
·-									
J _{id} =	9831								
A _c =	131400	mm²							
n =	14,00								
$J cls = b_{eff} h_c^3 / 12 =$									
x =	54,81								
h _c =		mm							
b eff =	1095								
h profilo =		mm							
A acciaio =		mm ²							
J acciaio =	16730000								
Asse neutro x = y _{n (in Gelfi progr)}	54,81	mm							
Nomento di inerzia sezione omogeneiz	zata all'acciaio				49	%			
				M _{pI,Rd} =	128	kNm	VERIFICATO	parziale ripri	stino
/erifica di deformabilità				. ,	36	%			
		2.,110		M _{pI,Rd} =	170,9	kNm	VERIFICATO	completo rip	ristino
		$M_{sd} > M_{pl,Rd}$		M _{sd} =	62,11	kNm			
/erifica di resistenza				M _{apl,Rd} =	64,28	kNm			
ERIFICHE									

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	145	di	182

<u>Verifica HEA220 - luce=5,02 metri - interasse 1,59 metri – neve 2kN/mq + scarico puntuale di una trave di collegamento</u>

In corrispondenza del vano scale il telaio principale presenta degli elementi HEA220, una delle due putrelle presenti viene estesa anche alla campata successiva per andare a chiudere la struttura creando uno scanso per girare attorno a delle porzioni esistenti in muratura da conservare (mura di accesso al camminamento delle mura di cinta). Pertanto in una campata invece di esserci un putrella HEA 160 e presente un HEA 220, tale trave presenta delle sollecitazioni che sono all'incirca il doppio rispetto alle campate limitrofe, presentando una trave che si inserisce al suo interno in prossimità dell'appoggio verso est.

Di seguito vengono riportate le sollecitazioni.

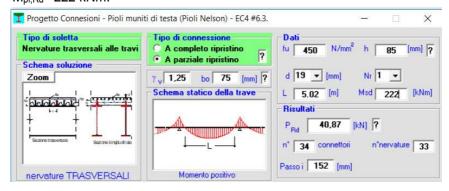
SOLLECITAZIONI		
M _{ed} =	98,23	kNm
T _{ed} =	103,80	kN

Verifica fase 1

omica race r								
Permanente str. (IPE+solaio) G ₁ =	4,24	kN/m						
Carichi variabili manutenzione $Q_k =$	0,75	kN/m	carichi da co	ostruzione ii	n conform	nità al §4.11.2	– EN 1991-1-6	
	SLU comb 1:							
$g_{G1}^*G_1+g_Q^*Q_{k1}$	6,63	kN/m						
	SLE q.p.:							
G ₁ + y ₂₁ *Q _{k1}	4,24	kN/m						
SOLLECITAZIONI								
M _{ed} =	20,90		Mrd trave	148,89	kN	verificato		
$T_{ed} =$	16,65		Trd trave	312,55	kN	verificato		

Verifica di resistenza e deformabilità - dimensionamento dei connettori (pioli Nelson)

Per il calcolo del momento resistente della sezione collaborante viene utilizzato il programma "profili" del Prof. Gelfi: M_{Sd} =98,23 kNm < $M_{pl,Rd}$ = 295,9 kNm.



PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	146	di	182

Il passo dei connettori considerato l'inserimento della lamiera grecata con nervature trasversali, può assumere valori costanti multipli di 150 mm. Si evidenzia che in base alle sollecitazioni in gioco i connettori non risultano necessari per la verifica a resistenza e che il completo ripristino non risulta realizzabile in quanto il passo risulta inferiore ai 150 mm; si prevede comunque di uniformare l'intervento realizzando un parziale ripristino, prevedendo l'inserimento dei connettori con passo 150 mm (connettori diametro 19 mm, altezza 85 mm): M_{Sd} =98,23 kNm < $M_{pl,Rd}$ =222 kNm.

Di seguito si riporta la tabellina riassuntiva con le verifiche di resistenza e deformabilità.

/ERIFICHE									
Verifica di resistenza				M _{apl,Rd} =	148,9	kNm			
		$M_{sd} > M_{pl,Rd}$		M _{sd} =	98,23	kNm			
				M _{pl,Rd} =	295,9	kNm	VERIFICATO	completo ri	pristino
Verifica di deformabilità					33	%			
				M _{pl,Rd} =	222	kNm	VERIFICATO	parziale ripr	istino
Momento di inerzia sezione omogeneizz	ata all'acciaio				44	%			
Asse neutro x = y _{n (in Gelfi progr)}	122,80	mm							
J acciaio =	54100000	mm ⁴							
A acciaio =	6434	mm ²							
h profilo =	210	mm							
b eff =	1255	mm							
$h_c =$	120	mm							
x =	122,80	mm							
$J cls = b_{eff} h_c^3 / 12 =$	180720000	mm ⁴							
n =	14,00								
$A_c =$	150600	mm ²							
J _{id} =	13430	cm ⁴							
N _{max} =	250		Company of a taging to pay						
δ_{max}	2,8	mm							
$\delta_{lim} = L/N_{max} =$	20,1								
1111 - 11142	$\delta_{\text{max}} < L/N_{\text{max}}$		VERIFICATO	%	14				
N ₂ =	350		amontalism come se a						
δ,	0,9	mm	visiliooner it ill						
$\delta_{lim} = L/N_2 =$	14,3								
11111	$\delta_2 < L/N_2$		VERIFICATO	%	7				

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	147	di	182

14.2.4.2 Solaio di copertura

Il nuovo solaio di copertura dell'ex-lavanderia viene realizzato con profili HEA 220, lamiera grecata trasversale alle putrelle e getto collaborante spessore 12 cm, armatura superiore Ø 8 maglia 15x15 cm, interasse tra le putrelle variabile, per motivi geometrici ed impiantistici. La presenza di interassi e di sovraccarichi accidentali diversi (accumulo della neve), comporta l'esigenza di verificare più configurazioni di carico per valutare le situazioni più gravose e per uniformare l'intervento. Il solaio presenta ad intradosso un controsoffitto e ad estradosso uno strato di isolamento termico, un masseto alleggerito di pendenza (per lo scolo delle acque meteoriche) ed una impermeabilizzazione.

Si procede con la verifica delle varie tipologie di carico ed interassi presenti procedendo in ordine a partire dalla trave in prossimità del castello carrarese.

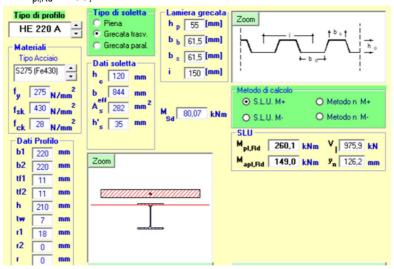
Verifica HEA220 – luce max.=5,87 metri - interasse 1,29 metri – neve 4,05 kN/mg

Di seguito vengono riportate le combinazioni di carico e le sollecitazioni.

COMBINAZIONI DI CARICO		
Permanente str. (IPE+solaio) G ₁ =	4,03	kN/m
Permanente non str. G ₂ =	3,68	kN/m
Carichi variabili Resid. Q _k =	5,22	kN/m
	SLU comb 1:	
g _{G1} *G ₁ +g _{G2} *G ₂ +g _{G2} *g _{2k tramezzi} +g _Q *Q _{k1}	18,59	kN/m
$g_{G1}*G_1+g_{G2}*G_2+g_Q*Q_{k1}$		
	SLE q.p.:	
$G_1+G_2+g_2+y_{21}*Q_{k1}$	7,71	kN/m
SOLLECITAZIONI		
M _{ed} =	80,07	
T _{ed} =	54,56	kN

Verifica fase 1

Permanente str. (IPE+solaio) G ₁ =	4,03	kN/m						
Carichi variabili manutenzione Q _k =	0,75	kN/m	carichi da d	costruzione ii	n conform	ità al §4.11.2	– EN 1991-1	-6
	SLU comb 1:							
g _{G1} *G ₁ +g _Q *Q _{k1}	6,36	kN/m						
	SLE q.p.:							
G ₁ + y ₂₁ *Q _{k1}	4,03	kN/m						
SOLLECITAZIONI								
M _{ed} =	27,39		Mrd trave	297,79	kN	verificato		
T _{ed} =	18,67		Trd trave	553,58	kN	verificato		



PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	148	di	182

Verifica di resistenza e deformabilità - dimensionamento dei connettori (pioli Nelson)

Per il calcolo del momento resistente della sezione collaborante viene utilizzato il programma "profili" del Prof. Gelfi: M_{Sd} =80,07 kNm < $M_{pl,Rd}$ = 260,1 kNm.

Il passo dei connettori considerato l'inserimento della lamiera grecata con nervature trasversali, può assumere valori costanti multipli di 150 mm. Utilizzando connettori diametro 19 mm e altezza 85 mm, tenuto conto delle sollecitazioni in gioco, si prevede la realizzazione di una connessione a parziale ripristino, atta a garantire il momento sollecitante, tale momento viene garantito prevedendo di inserire un connettore ogni 300 mm. M_{Sd} =104,05 kNm < $M_{pl,Rd}$ = 208 kNm

Di seguito si riporta la tabellina riassuntiva con le verifiche di resistenza e deformabilità.

VERIFICHE								
Verifica di resistenza				M _{apl,Rd} =	149	kNm		
		$M_{sd} > M_{pl,Rd}$		M _{sd} =	80,07	kNm		
				M _{pl,Rd} =	279,7	kNm	VERIFICATO	completo ripristino
Verifica di deformabilità					29	%		
				M _{pl,Rd} =	208	kNm	VERIFICATO	parziale ripristino
Momento di inerzia sezione omogeneizz	ata all'acciaio				38	%		
Asse neutro x = y _{n (in Gelfi progr)}	126,20	mm						
J acciaio =	108200000	mm ⁴						
A acciaio =	12868	mm ²						
h profilo =	210	mm						
b eff =		mm						
h _c =		mm						
x =	126,20							
$J cls = b_{eff} h_c^3 / 12 =$	121536000							
n =	14,00							
$A_c =$	101280							
J _{id} =	24277	cm ⁴						
N _{max} =	250							
δ_{max}	2,3	mm						
$\delta_{lim} = L/N_{max} =$	23,5							
	δ_{max} < L/N _{max}		VERIFICATO	%	10			
N ₂ =	350							
δ ₂	1,6	mm						
$\delta_{lim} = L/N_2 =$	16.8							
-mm -5/11/2	δ ₂ < L/N ₂		VERIFICATO	%	9			

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	149	di	182

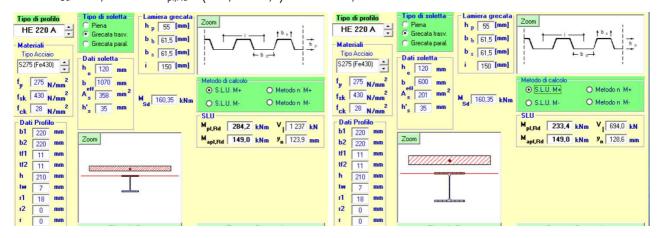
Verifica n°2 HEA220 affiancate- luce max.=10,89 metri - interasse 1,67 metri - neve 3,23 kN/mg

Per esigenze impiantistiche è risultato necessario prevedere la realizzazione di un interasse maggiore in prossimità del castello carrarese, tale esigenza impiantistica si è rilevata molto vincolante in quanto coincidente con la porzione di solaio ipoteticamente maggiormente sollecitata, in quanto la verifica tiene conto della possibilità di accumulo della neve essendo l'edificio "ex-lavanderia" più basso rispetto al Castello Carrarese. Si è quindi previsto di raddoppiare i profili HEA 220 per sopperire alle esigenze di carico conseguenti all'aumento dell'interasse.

Di seguito vengono riportate le combinazioni di carico e le sollecitazioni.

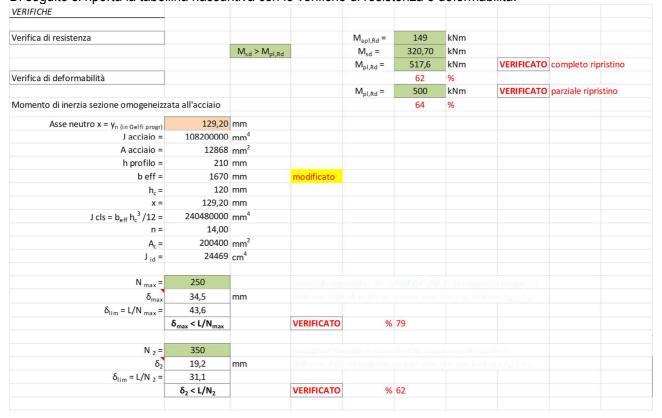
Verifica fase 1

Permanente str. (IPE+solaio) G_1 =	4,92	kN/m					
Carichi variabili manutenzione $Q_k =$	0,75	kN/m	carichi da co	struzione ii	n conform	ità al §4.11.2	– EN 1991-1-6
	SLU comb 1:						
g _{G1} *G ₁ +g _Q *Q _{k1}	7,52	kN/m					
	SLE q.p.:						
$G_1 + y_{21} * Q_{k1}$		kN/m					
SOLLECITAZIONI							
M _{ed} =	111,51		M _{rd} trave	297,79	kN	verificato	
T _{ed} =	40,96		Trd trave	553,58	kN	verificato	



PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	150	di	182


Verifica di resistenza e deformabilità - dimensionamento dei connettori (pioli Nelson)

Per il calcolo del momento resistente della sezione collaborante viene utilizzato il programma "profili" del Prof. Gelfi: M_{Sd} =320,7 kNm < $M_{pl,Rd}$ = (284,2+233,4) kNm = 517,6 kNm.

Il passo dei connettori considerato l'inserimento della lamiera grecata con nervature trasversali, può assumere valori costanti multipli di 150 mm. Utilizzando connettori diametro 19 mm e altezza 85 mm, tenuto conto delle sollecitazioni in gioco, si prevede la realizzazione di una connessione a parziale ripristino, atta a garantire il momento sollecitante, tale momento viene garantito prevedendo di inserire una coppia di connettori (uno per putrella) ogni 150 mm: M_{Sd}=320,7 kNm < M_{Dl.Rd} = 500 kNm.

Di seguito si riporta la tabellina riassuntiva con le verifiche di resistenza e deformabilità.

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	151	di	182

Verifica HEA220 - luce max.=10,89 metri - interasse 0,93 metri - neve 2,48 kN/mg

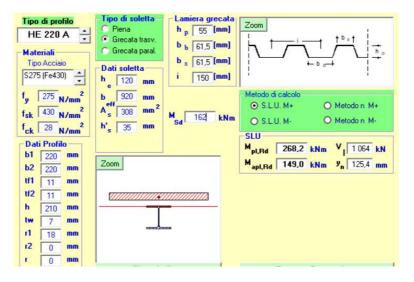
Di seguito vengono riportate le combinazioni di carico e le sollecitazioni, per la configurazione in oggetto.

COMBINAZIONI DI CARICO		
Permanente str. (IPE+solaio) G ₁ =	2,68	kN/m
Permanente non str. G ₂ =	2,65	kN/m
Carichi variabili Resid. Q_k =	2,31	kN/m
	SLU comb 1:	
g _{G1} *G ₁ +g _{G2} *G ₂ +g _{G2} *g _{2k tramezzi} +g _Q *Q _{k1}	10,93	kN/m
g _{G1} *G ₁ +g _{G2} *G ₂ +g _Q *Q _{k1}		
	SLE q.p.:	
$G_1+G_2+g_2+y_{21}*Q_{k1}$	5,34	kN/m
SOLLECITAZIONI		
M _{ed} =	162,00	kNm
T _{ed} =	59,50	kN

Verifica fase 1

rennica tase i								
Permanente str. (IPE+solaio) G ₁ =	2,68	kN/m						
Carichi variabili manutenzione Q _k =	0,75	kN/m	carichi da d	costruzione ii	n conforn	nità al §4.11.2	EN 1991-1	-6
	SLU comb 1:							
g _{G1} *G ₁ +g _Q *Q _{k1}	4,61	kN/m						
	SLE q.p.:							
G ₁ + y ₂₁ *Q _{k1}	2,68	kN/m						
SOLLECITAZIONI								
M _{ed} =	68,40		Mrd trave	148,89	kN	verificato		
T _{ed} =	25,12		Trd trave	312,55	kN	verificato		

Verifica di resistenza e deformabilità - dimensionamento dei connettori (pioli Nelson)


Per il calcolo del momento resistente della sezione collaborante viene utilizzato il programma "profili" del Prof. Gelfi: M_{Sd} =162,0 kNm < $M_{pl,Rd}$ = 268,2 kNm.

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	152	di	182

Il passo dei connettori considerato l'inserimento della lamiera grecata con nervature trasversali, può assumere valori costanti multipli di 150 mm. Utilizzando connettori diametro 19 mm e altezza 85 mm, tenuto conto delle sollecitazioni in gioco, si prevede la realizzazione di una connessione a parziale ripristino, atta a garantire il momento sollecitante, tale momento viene garantito prevedendo di inserire un connettore ogni 300 mm. M_{Sd} =162 kNm < $M_{pl,Rd}$ = 213 kNm

Di seguito si riporta la tabellina riassuntiva con le verifiche di resistenza e deformabilità.

$\delta_2 < L/N_2$	I	VERIFICATO	0/	51				
31,1								
15,8	mm							
350				1	'			
max , max			, -					
		VERIFICATO	%	84				
	mm							
250						-		
12762	CIII							
-								
zata all'acciaio				76	%			
			M _{pI,Rd} =		_	VERIFICATO	parziale ripris	stino
				60				
			$M_{pl,Rd} =$	268,2	kNm	VERIFICATO	completo rip	ristino
	$M_{sd} > M_{pl,Rd}$		$M_{sd} =$	162,00	kNm			
			M _{apl,Rd} =	149	kNm			
) = = = = = = = = = = = = = = = = = = =	54100000 6434 210 920 120 125,40 132480000 14,00 110400 12762 250 36,5 43,6 \$\delta_{max} < \textstyle \textst	22ata all'acciaio 125,40 mm 54100000 mm ⁴ 6434 mm ² 210 mm 120 mm 125,40 mm 132480000 mm ⁴ 14,00 110400 mm ² 12762 cm ⁴ 250 36,5 mm 43,6 $\delta_{max} < L/N_{max}$ 350 15,8 mm	22ata all'acciaio 125,40 mm 54100000 mm ⁴ 6434 mm ² 210 mm 920 mm 125,40 mm 132480000 mm ⁴ 14,00 110400 mm ² 12762 cm ⁴ 250 36,5 mm 43,6 $\delta_{max} < L/N_{max}$ VERIFICATO 350 15,8 mm	M _{pl,Rd} = M _p	M _{sd} > M _{pl,Rd}			

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	153	di	182

Verifica HEA220 - luce max.=10,89 metri - interasse 0,87 metri - neve 1,94 kN/mg

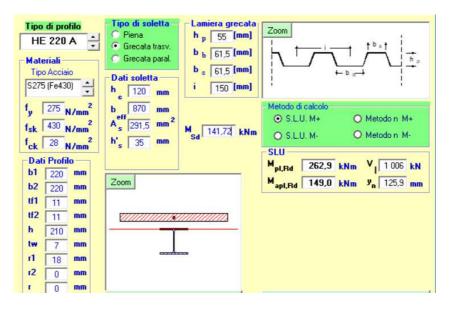
Di seguito vengono riportate le combinazioni di carico e le sollecitazioni, per la configurazione in oggetto.

[
COMBINAZIONI DI CARICO		
Permanente str. (IPE+solaio) G ₁ =	2,54	kN/m
Permanente non str. G ₂ =	2,48	kN/m
Carichi variabili Resid. Q _k =	1,69	kN/m
	SLU comb 1:	
$g_{G1}^*G_1+g_{G2}^*G_2+g_{G2}^*g_{2k \text{ tra mezzi}} +g_Q^*Q_{k1}$	9,56	kN/m
$g_{G1}*G_1+g_{G2}*G_2+g_{Q}*Q_{k1}$		
	SLE q.p.:	
$G_1+G_2+g_2+y_{21}*Q_{k1}$	5,02	kN/m
SOLLECITAZIONI		
M _{ed} =	141,72	kNm
T _{ed} =	52,05	kN

Verifica fase 1

Permanente str. (IPE+solaio) G ₁ =	2,54	kN/m						
Carichi variabili manutenzione $Q_k =$	0,75	kN/m	carichi da co	ostruzione ii	n confori	mità al §4.11.2 -	– EN 1991-1	-6
	SLU comb 1:							
g _{G1} *G ₁ +g _Q *Q _{k1}	4,43	kN/m						
	SLE q.p.:							
G ₁ + y ₂₁ *Q _{k1}	2,54	kN/m						
SOLLECITAZIONI								
M _{ed} =	65,68		Mrd trave	148,89	kN	verificato		
T _{ed} =	24,13		Trd trave	312,55	kN	verificato		

Verifica di resistenza e deformabilità - dimensionamento dei connettori (pioli Nelson)


Per il calcolo del momento resistente della sezione collaborante viene utilizzato il programma "profili" del Prof. Gelfi: M_{Sd} =141,72 kNm < $M_{pl,Rd}$ = 262,9 kNm.

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	154	di	182

Il passo dei connettori considerato l'inserimento della lamiera grecata con nervature trasversali, può assumere valori costanti multipli di 150 mm. Utilizzando connettori diametro 19 mm e altezza 85 mm, tenuto conto delle sollecitazioni in gioco, si prevede la realizzazione di una connessione a parziale ripristino, atta a garantire il momento sollecitante, tale momento viene garantito prevedendo di inserire un connettore ogni 300 mm. M_{Sd} =141,72 kNm < $M_{pl,Rd}$ = 213 kNm

Di seguito si riporta la tabellina riassuntiva con le verifiche di resistenza e deformabilità.

δ_{max} δ_{lim} = L/N $_{max}$ =	34,6 43,6	mm					
N _{max} =							
J _{id} =							
A _c =							
J CIS = D _{eff} II _c / IZ = n =	14,00						
$J cls = b_{eff} h_c^3 / 12 =$							
h _c = x =	125,90						
		mm					
h profilo = b eff =		mm					
A acciaio =		mm ²					
J acciaio =	54100000						
Asse neutro $x = y_{n \text{ (in Gelfi progr)}}$							
Momento di inerzia sezione omogeneiz	zata all'acciaio			67	%		
			M _{pI,Rd} =	213	kNm	VERIFICATO	parziale ripristino
Verifica di deformabilità				54	%		
			$M_{pl,Rd} =$	262,9	kNm	VERIFICATO	completo ripristino
		$M_{sd} > M_{pl,Rd}$	$M_{sd} =$	141,72	kNm		
/erifica di resistenza			$M_{apl,Rd} =$	149	kNm		

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	155	di	182

Verifica HEA220 - luce max.=10,89 metri - interasse 1,03 metri - neve 0,80 kN/mg

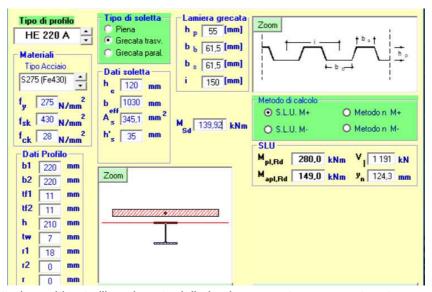
Di seguito vengono riportate le combinazioni di carico e le sollecitazioni, per la configurazione in oggetto.

2,92	kN/m
2,94	kN/m
0,82	kN/m
SLU comb 1:	
9,44	kN/m
SLE q.p.:	
5,86	kN/m
139,92	kNm
51,39	kN
	2,94 0,82 <u>SLU comb 1:</u> 9,44 <u>SLE q.p.:</u> 5,86

Verifica fase 1

Permanente str. (IPE+solaio) G ₁ =	2 92	kN/m						
r ermanente sur (n 1 seitale) e ₁	2,32	,						
Carichi variabili manutenzione Q_k =	0,75	kN/m	carichi da co	ostruzione ii	n confori	mità al §4.11.2	EN 1991-1	-6
	SLU comb 1:							
g _{G1} *G ₁ +g _Q *Q _{k1}	4,92	kN/m						
	SLE q.p.:							
G ₁ + y ₂₁ *Q _{k1}	2,92	kN/m						
SOLLECITAZIONI								
M _{ed} =	72,94		Mrd trave	148,89	kN	verificato		
T _{ed} =	26,79		Trd trave	312,55	kN	verificato		

Verifica di resistenza e deformabilità - dimensionamento dei connettori (pioli Nelson)


Per il calcolo del momento resistente della sezione collaborante viene utilizzato il programma "profili" del Prof. Gelfi: M_{Sd}=139,92 kNm < M_{pl,Rd} = 280 kNm.

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	156	di	182

Il passo dei connettori considerato l'inserimento della lamiera grecata con nervature trasversali, può assumere valori costanti multipli di 150 mm. Utilizzando connettori diametro 19 mm e altezza 85 mm, tenuto conto delle sollecitazioni in gioco, si prevede la realizzazione di una connessione a parziale ripristino, atta a garantire il momento sollecitante, tale momento viene garantito prevedendo di inserire un connettore ogni 300 mm. M_{Sd} =139,92 kNm < $M_{pl,Rd}$ = 210 kNm

Di seguito si riporta la tabellina riassuntiva con le verifiche di resistenza e deformabilità.

Verifica di resistenza				M _{apl,Rd} =	149	kNm			
		$M_{sd} > M_{pl,Rd}$		$M_{sd} =$	139,92	kNm			
				M _{pl,Rd} =	280	kNm	VERIFICATO	completo rip	ristino
Verifica di deformabilità					50	%			
				M _{pl,Rd} =	210	kNm	VERIFICATO	parziale ripris	stino
Momento di inerzia sezione omogeneiz	zata all'acciaio				67	%			
Asse neutro x = y _{n (in Gelfi progr)}	124,30	mm							
J acciaio =		mm ⁴							
A acciaio =	6434	mm ²							
h profilo =	210	mm							
b eff =	1030	mm							
h _c =	120	mm							
x =	124,30								
$J cls = b_{eff} h_c^3 / 12 =$									
n =	14,00								
$A_c =$									
J _{id} =	13010	cm ⁴							
N _{max} =									
δ_{max}		mm							
δ_{lim} = L/N $_{max}$ =									
	$\delta_{max} < L/N_{max}$		VERIFICATO	%	90				
N ₂ =									
δ_2	5,5	mm			I				
δ_{lim} = L/N $_2$ =									
	$\delta_2 < L/N_2$		VERIFICATO	%	18				

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	157	di	182

<u>Verifica HEA220 – luce max.=5,87 metri - interasse 1,63 metri – neve 0,80 kN/mq</u>

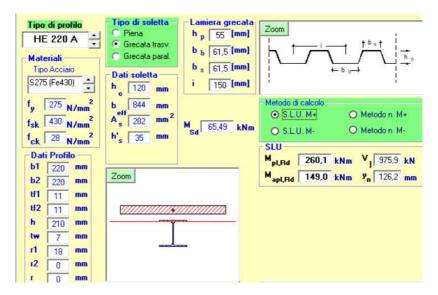
Di seguito vengono riportate le combinazioni di carico e le sollecitazioni, per la configurazione in oggetto.

COMBINAZIONI DI CARICO		
Permanente str. (IPE+solaio) G ₁ =	4,83	kN/m
Permanente non str. G ₂ =	4,65	kN/m
Carichi variabili Resid. Q _k =	1,30	kN/m
	SLU comb 1:	
g _{G1} *G ₁ +g _{G2} *G ₂ +g _{G2} *g _{2k tramezzi} +g _Q *Q _{k1}	15,21	kN/m
g _{G1} *G ₁ +g _{G2} *G ₂ +g _Q *Q _{k1}		
	SLE q.p.:	
$G_1+G_2+g_2+y_{21}*Q_{k1}$	9,48	kN/m
SOLLECITAZIONI		
M _{ed} =	65,49	kNm
T _{ed} =	44,63	kN

Verifica fase 1

Permanente str. (IPE+solaio) G ₁ =	4,83	kN/m						
Carichi variabili manutenzione Q_k =	0,75	kN/m	carichi da co	struzione ii	n conforn	nità al §4.11.2 -	- EN 1991-1	-6
	SLU comb 1:							
$g_{G1}^*G_1^+g_Q^*Q_{k1}$	7,40	kN/m						
	SLE q.p.:							
G ₁ + y ₂₁ *Q _{k1}	4,83	kN/m						
SOLLECITAZIONI								
M _{ed} =	31,87		M _{rd} trave	297,79	kN	verificato		
T _{ed} =	21,72		Trd trave	553,58	kN	verificato		

Verifica di resistenza e deformabilità - dimensionamento dei connettori (pioli Nelson)


Per il calcolo del momento resistente della sezione collaborante viene utilizzato il programma "profili" del Prof. Gelfi: M_{Sd} = 65.49 kNm < $M_{pl,Rd}$ = 260,1 kNm.

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	158	di	182

Il passo dei connettori considerato l'inserimento della lamiera grecata con nervature trasversali, può assumere valori costanti multipli di 150 mm. Utilizzando connettori diametro 19 mm e altezza 85 mm, tenuto conto delle sollecitazioni in gioco, si prevede la realizzazione di una connessione a parziale ripristino, atta a garantire il momento sollecitante, tale momento viene garantito prevedendo di inserire un connettore ogni 300 mm. M_{Sd} =65,49 kNm < $M_{pl,Rd}$ = 210 kNm

Di seguito si riporta la tabellina riassuntiva con le verifiche di resistenza e deformabilità.

VERIFICHE									
/LIGHTCHL									
Verifica di resistenza				M _{apl,Rd} =	149	kNm			
		$M_{sd} > M_{pl,Rd}$		M _{sd} =	65,49	kNm			
				M _{pl,Rd} =	260,1	kNm	VERIFICATO	completo rip	ristino
Verifica di deformabilità					25	%			
				M _{pl,Rd} =	181	kNm	VERIFICATO	parziale ripri	stino
Momento di inerzia sezione omogeneiza	zata all'acciaio				36	%			
Asse neutro x = y _{n (in Gelfi progr)}	126,20	mm							
J acciaio =	108200000	mm ⁴							
A acciaio =	12868	mm ²							
h profilo =	210	mm							
b eff =	844	mm							
h _c =	120	mm							
x =	126,20	mm							
$J cls = b_{eff} h_c^3 / 12 =$	121536000	mm ⁴							
n =	14,00								
$A_c =$	101280	mm ²							
J _{id} =	24277	cm ⁴							
N _{max} =	250								
δ_{max}	2,9	mm							
δ_{lim} = L/N $_{max}$ =	23,5								
	$\delta_{max} < L/N_{max}$		VERIFICATO	%	12				
N ₂ =									
δ_2	0,4	mm							
δ_{lim} = L/N $_2$ =									
	$\delta_2 < L/N_2$		VERIFICATO	%	2				

In conclusione per quanto riguarda il solaio di copertura si prevede di inserire in modo diffuso dei connettori diametro 19 mm e altezza 85 mm con passo 300 mm ad esclusione della campata prevista con un doppio HEA 220 dove è prevista la realizzazione di una coppia di connettori (uno per ogni putrella) posti a150 mm.

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	159	di	182

14.3 STRUTTURA NUOVA SCALA "EX LAVANDERIA"

Di seguito viene riportato il dimensionamento della rampa realizzata attraverso profili metallici UPN 220 in acciaio S275J0 (Fe 430), considerando dei gradini dal peso complessivo di 1,00 kN/mq, un parapetto metallico del peso di 0,75 kN/m e un carico accidentale pari a 4,0 KN/mq.

I cosciali della prima e seconda rampa poggiano su travi IPE220 sostenute nel primo caso da due pilastri IPE120 e nel secondo dai pilastri HEA220 della struttura principale dell'edificio.

Si esegue il calcolo inserendo nel modello i carichi dovuti al carico parapetto e al carico accidentale dell'affollamento. Si riportano in via grafica i parametri della sollecitazioni calcolati nelle combinazioni Stati Limite Ultimi secondo NTC-2018.

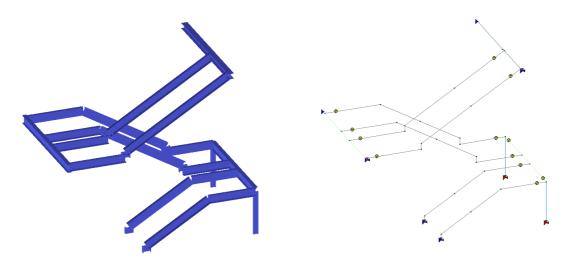


Figura 86: Modello di calcolo

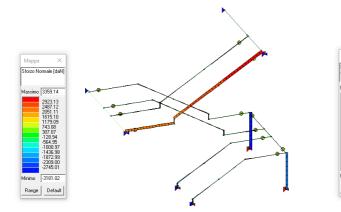


Figura 87: Diagramma dello Sforzo Normale



Figura 88: Diagramma del Momento flettente

CASTELLO CARRARESI - INTERVENTO DI RESTAURO E
RIQUALIFICAZIONE FUNZIONALE

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	160	di	182

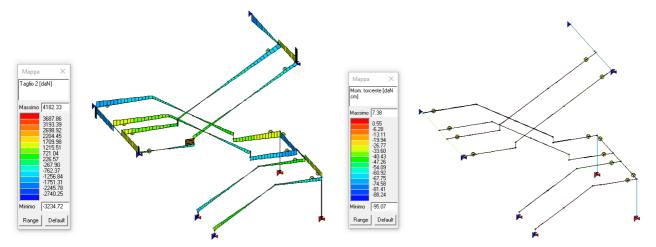


Figura 89: Diagramma dello sforzo di taglio

Figura 90: Diagramma del momento torcente

Il programma esegue le verifiche di resistenza e stabilità. Si riportano i risultati in via grafica, in termini di sfruttamento percentuale della struttura.

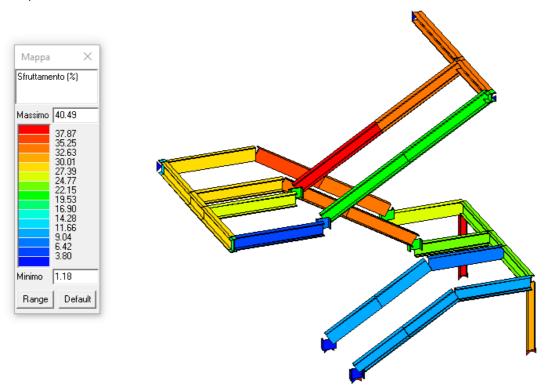


Figura 91: Sfruttamento percentuale massimo 40,49%

Nella combinazione SLE si verifica che la deformazione ultima della struttura sia inferiore ai limiti ammessi da normativa.

	作りま
	N. W.
	14
The state of the s	10.70
	S. S. P.
The same	

CASTELLO CARRARESI - INTERVENTO DI RESTAURO E	Elaborato:	APPR_31_ST_RDC		
RIQUALIFICAZIONE FUNZIONALE	File:	APPR_31_ST_RDC.doc		
PROGETTO ESECUTIVO	Rev.	00	del	Luglio 2018
RELAZIONE DI CAL COLO	Pagina	161	di	182

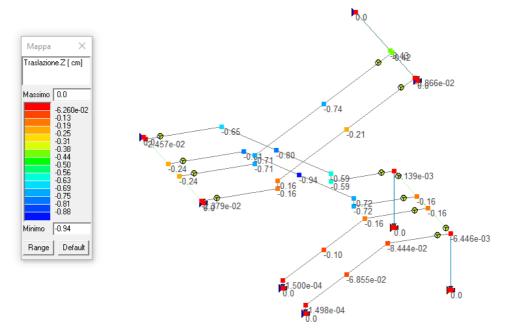
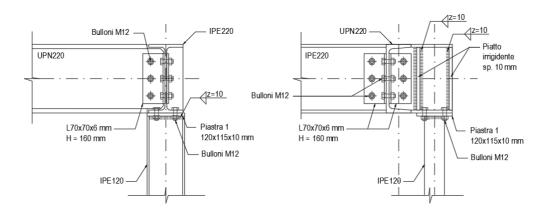



Figura 92: Deformazione verticale—spostamento verticale di 0,94 cm < L/250 = 2,20 cm (cosciale)

14.3.1 Principali nodi e giunti

Si riportano nel presente paragrafo le verifiche dei principali giunti di collegamento presenti nella struttura. Per ciascuna tipologia, la verifica è eseguita nelle condizioni di carico più gravose.

Nodo UPN220 - IPE220

Sollecitazioni massime:

Vsd = 23.98 kN

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	162	di	182

angolare	h	b	t	Ø _z	Ø _y	e _{z,min}	e _{z,max}	e _{y, min}	e _{y, max}
angolaro	mm	mm	mm	mm	mm	mm	mm	mm	mm
L 70 x 70 x 6	70	70	6	M16	M16	36	43	36	43

Sollecitazione di calcolo

N _{Ed} [kN]	V _{Ed} [kN]	mortasat.	l mortasatura [mm]	h _{mortasatura} [mm]
0	24	nessuna	55	15

Caratteristiche acciaio

acciaio	f _{tk} [MPa]	f _{yk} [MPa]
S275	430	275

Caratteristiche bulloni

М	16	classe	μ
non pre	caricati	8,8	0,45

Caratteristiche singolo angolare

	[t p	n colonne,x	n colonne,y	n _{file}	n piani taglio	d ₀	d _m	f _{tb}	A _{res}	F _{v,Rd}	F _{t,Rd}	F _{s,Rd}	F _{p,C}
ı	[mm]	[mm]	[-]	[-]	[-]	[-]	[mm]	[mm]	[MPa]	[mm ²]	[kN]	[kN]	[kN]	[kN]
I	160	6	1	1	3	2	17,0	24,0	800	157	60,29	90,43	28,77	79,93

Verifica angolare ed anima profilo da giuntare (forza oriz. F = 0 kN; forza vert. F = 24 kN; momento torcente M = 1,03 kNm)

Verifica bulloni trave da giuntare

$F_{x,N} =$	0,00	kN		$F_{z,V} =$	4,00	kN
F _{x,M} =	4,69	kN		F _{z,M} =	0,00	kN
F _{v,Ed} =	6,16	≤	Fv,Rd=	60,29	kN	Verifica

Rifollamento angolare lungo x

	bu	ılloni di bor	do	bulloni interni				
	α	0,59		α	1,00			
	k	2,42		k	2,50			
I								
	$F_{b,Ed}$	4,69	kN	$F_{b,Rd}$	46,96	kN		

Rifollamento angolare lungo z

bu	ılloni di bor	do	bulloni interni				
α	0,49		α	0,83			
k	2,50		k	2,50			
F _{b.Ed}	4,00	kN	F _{b.Rd}	40,47	kN		

$$((F_{b,Ed,x} / F_{b,Rd,x})^2 + (F_{b,Ed,z} / F_{b,Rd,z})^2)^{0.5} = 0,14$$

1,00 Verifica

Rifollamento anima profilo da giuntare lungo x

bu	ılloni di bor	do	bulloni interni				
α	α 0,74			1,00			
k	2,50		k	2,50			
$F_{b,Ed}$	9,37	kN	$F_{b,Rd}$	60,41	kN		

Rifollamento anima profilo da giuntare lungo z

bu	ılloni di bor	do	bulloni interni						
α	α 0,78		α	0,83					
k	k 2,50		k	2,50					
F _{b,Ed} 8,00 kN			$F_{b,Rd}$	63,67	kN				

Verifica anima profilo a rifollamento

$$((F_{b,Ed,x}/F_{b,Rd,x})^2 + (F_{b,Ed,z}/F_{b,Rd,z})^2)^{0.5} =$$

1,00 Verifica

Verifica singolo angolare

$V_{Ed} =$	12,00	\leq	V _{c.Rd} =	145,16	kN	Verifica
V _{Ed} =	12,00	≤	V _{c,Rd,net} =	129,89	kN	Verifica
V _{Ed} =	12,00	≤	V _{eff,2,Rd} =	106,11	kN	Verifica
N _{Ed} =	0,00	≤	$N_{pl,Rd} =$	251,43	kN	Verifica
N _{Ed} =	0,00	≤	N _{Rd} =	202,48	kN	Verifica

Instabilità locale

Limitazioni posizioni fori

distanze i	interassi	min	max	Verifica
[m	m]	[mm]	[mm]	Verrica
e _{x,angolare}	30,0	20,4	-	SI
e _{x,anima}	38,0	20,4	-	SI
e _{y,angolare}	30,0	20,4	-	SI
e z, angolare	e _{z,angolare} 25,0		-	SI
e _{z,anima}	40,0	20,4	-	SI
p _x	55,0	40,8	82,6	SI
p _z	55,0	40,8	82,6	SI
P _y	45,0	40,8	82,6	SI
d _x	40,0	36,0	43,0	SI
d _y	40,0	36,0	43,0	SI

Verifica anima profilo da giuntare

$V_{Ed} =$	24,00	≤	$V_{c,Rd} =$	240,14	kN	Verifica
$V_{Ed} =$	24,00	≤	V _{c,Rd,net} =	255,65	kN	Verifica
V _{Ed} =	24,00	≤	V _{eff,2,Rd} =	125,79	kN	Verifica
N _{Ed} =	0,00	≤	$N_{pl,Rd} =$	415,94	kN	Verifica
N _{Ed} =	0,00	\leq	$N_{u,Rd} =$	398,53	kN	Verifica

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	163	di	182

Verifica angolare ed anima profilo da supporto (forza oriz. F = 0 kN; forza vert. F = 24 kN; momento torcente M = 0,96 kNm)

Verifica bulloni trave da support	F _{x.N} =	0,00	kN		F _{z.V} =	4,00	kN
	F _{v.M} =	4,36	kN		F _{z,M} =	0,00	kN
	F _{v.Ed} =	5,92	≤	Fv,Rd =	60,29	kN	Verifica
				F _{t.Rd} =			
	.,			= 0,10			Verifica

Rifollamento angolare lungo y

bu	ılloni di bor	do	bulloni interni					
α 0,59			α	1,00				
k 2,42			k	2,50				
$F_{b,Ed}$	4,36	kN	$F_{b,Rd}$	46,96	kN			

Rifollamento angolare lungo z

bı	ılloni di bor	do	bulloni interni		
α	0,49		α 0,83		
k	2,50		k 2,50		
				•	
F _{b.Ed}	4,00	kN	F _{b.Rd} 40,47 kl		kN

$$((F_{b,Ed,y} / F_{b,Rd,y})^2 + (F_{b,Ed,z} / F_{b,Rd,z})^2)^{0.5} = 0.14$$

Verifica

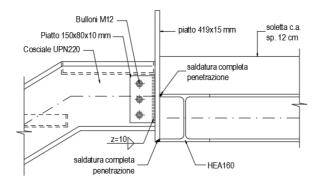
Rifollamento anima profilo da supporto lungo y

bı	ılloni di bor	do	k	oulloni interr	ni			
α	1,00		α	1,00				
k	2,50		k					
F _{b,Ed}	4,36	kN	$F_{b,Rd}$	kN				

Rifollamento anima profilo da supporto lungo z

bu	ılloni di bor	do	bulloni interni		
α	1,00		α	0,83	
k	2,50		k 2,50		
F _{b.Ed}	4,00	kN	F _{b.Rd}	kN	

Verifica anima profilo a rifollamento


$$((F_{b,Ed,y}/F_{b,Rd,y})^2 + (F_{b,Ed,z}/F_{b,Rd,z})^2)^{0.5} = 0.08$$

1,00 Verifica

Verifica singolo angolare

$V_{Ed} =$	12,00	\leq	$V_{c,Rd} =$	145,16	kN	Verifica
$V_{Ed} =$	12,00	≤	V _{c,Rd,net} =	129,89	kN	Verifica
V _{Ed} =	12,00	≤		106,11	kN	Verifica

Nodo UPN220 - IPE220

Sollecitazioni massime:

Vsd = 12,89 kN

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Clab a rate :	ADDD 24 CT DDC		
Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	164	di	182

Verifica coprigiunto anima ed anima profilo da giuntare (forza oriz. F = 0 kN; forza vert. F = 13 kN; momento torcente M = 1,1 kNm)

Caratteristiche singola piastra

ſ	b	h	t _p	n _{colonne}	n _{file}	n piani taglio	d_0	d _m	f _{tb}	A _{res}	$F_{v,Rd}$	$F_{t,Rd}$	$F_{s,Rd}$	$F_{p,C}$
ı	[mm]	[mm]	[mm]	[-]	[-]	[-]	[mm]	[mm]	[MPa]	[mm ²]	[kN]	[kN]	[kN]	[kN]
	80	180	10,0	1	3	1	17,0	24,0	800	157	60,29	90,43	28,77	79,93

Verifica bulloni a taglio

F _{x,N} =	0,00	kN
F _{x,M} =	8,50	kN

4,33 0,00 Fv,Rd 60,29 kN Verifica

Rifollamento coprigiunto lungo x

bu	ılloni di bor	do	bulloni interni		
α	0,59		α	0,73	
k	2,42		k 2,50		
$F_{b,Ed}$	8,50	kN	$F_{b,Rd}$	kN	

Rifollamento coprigiunto lungo z

kΝ

bu	ılloni di bor	do	bulloni interni			
α	0,49		α 1,00 k 2,42			
k	2,50		k			
$F_{b,Ed}$	4,33	kN	F _{b,Rd}	65,23	kN	

Verifica coprigiunto a rifollamento

$$((F_{b,Ed,x}/F_{b,Rd,x})^2 + (F_{b,Ed,z}/F_{b,Rd,z})^2)^{0.5} = 0.13$$

Rifollamento anima profilo lungo x

bu	ılloni di bord	do	bulloni interni				
α	0,49		α				
k	2,50		k 2,50				
F _{b.Ed}	8,50	kN	F _{b.Rd}	39,80	kN		

Rifollamento anima profilo lungo z

bı	ılloni di bor	do	bulloni interni			
α	0,88		α 1,00			
k	2,42		k 2,42			
$F_{b,Ed}$	4,33	kN	F _{b.Rd} 69,27 kN			

Verifica anima profilo a rifollamento

$$((F_{b,Ed,x}/F_{b,Rd,x})^2 + (F_{b,Ed,z}/F_{b,Rd,z})^2)^{0.5} = 0.22$$

1,00 Verifica

Verifica singola piastra coprigiunto

Verifica	kN	214,31	V _{c,Rd} =	≤	13,00	V _{Ed} =
Verifica	kN	256,20	V _{c,Rd,net} =	≤	13,00	V _{Ed} =
Verifica	kN	207,09	V _{eff,2,Rd} =	≤	13,00	V _{Ed} =
Verifica	kN	471,43	$N_{pl,Rd} =$	≤	0,00	N _{Ed} =
Verifica	kN	399,38	N _{Rd} =	≤	0,00	N _{Ed} =

Limitazioni posizioni fori

	,			
distanze / interassi [mm]		min	max	Verifica
		[mm]	[mm]	Verrica
e _{z, coprigiunto}	25,0	20,4	-	SI
e _{z,anima}	45,0	20,4	-	SI
e _{x, coprigiunto}	30,0	20,4	-	SI
e _{x,anima}	25,0	20,4	-	SI
p _z	65,0	40,8	82,6	SI
p,	50,0	40,8	82,6	SI

Instabilità locale

Verifica anima profilo

V _{Ed} =	13,00	≤	V _{c,Rd,net} =	255,65	kN	Verifica
$V_{Ed} =$	13,00	≤	$V_{eff,2,Rd} =$	134,95	kN	Verifica
N_ =	0,00	≤	N =	235,64	kN	Verifica

Verifica saldatura

Sollecitazioni di calcolo

T _{Ed}	α	e	T _{⊥,Ed}	N _{Ed}	T _{//,Ed}	M _{Ed}
[kN]	[°]	[mm]	[kN]	[kN]	[kN]	[kNm]
13	0	0	9	0,00	13,00	

Caratteristiche meccaniche cordone di saldatura

acciaio	f yk [MPa]	β ₁ [-]	β ₂ [-]	β [-]	γ _{M2} [-]
S275	275,00	0,70	0,85	0,85	1,25

Caratteristiche cordone					Verifica 1			Verifica 2					
n _{cordoni}	а	ı	Α	J	t_	n_{\perp}	t _{//}	(n_1 2 + 1	t_2 + t _{//} 2)0.5	≤ β_1 f _{yk}	n_	+ t __ ≤	β ₂ f _{yk}
[-]	[mm]	[mm]	[mm ²]	[mm ⁴]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	Verifica	[MPa]	[MPa]	Verifica
2	10,00	150	3,00E+03	5,63E+06	2,89	0,00	4,33	5,21	192,50	SI	2,89	233,75	SI

SM Ingegneria S.r.l. - Prof. Ing. Claudio Modena

Sede: Via dell'Artigianato, 7- 37066 Caselle di Sommacampagna (VR) - T (+39) 045.8581711 - F (+39) 045.8589182 E-mail: infopd@smingegneria.it - Web: www.smingegneria.it

14.3.2 Verifica dei parapetti

Parapetto scala

Il parapetto della nuova scala dell'ex-lavanderia è previsto con una struttura metallica realizzata con profili cavi in acciaio S275J0, la struttura viene poi rivestita come da progetto architettonico. La struttura è composta dai seguenti elementi:

- Montanti di partenza e di arrivo 80x40 spessore 4 mm;
- Montanti intermedi 40x40 spessore 4 mm;
- Traverso superiore 40x80 spessore 4 mm;
- Traverso inferiore 40x40 spessore 4 mm;

La scala viene verificata nella varie configurazioni di carico delle rampe, prevedendo una spinta orizzontale pari a 2 kN/m applicati alla quota superiore del parapetto.

Il programma esegue le verifiche di resistenza e stabilità. Si riportano i risultati in via grafica, in termini di sfruttamento percentuale della struttura.

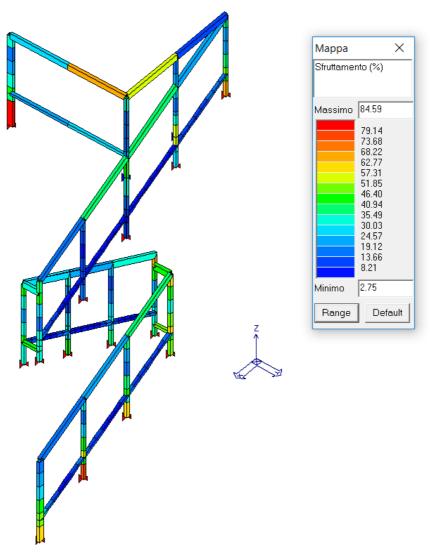


Figura 93: Sfruttamento percentuale massimo 84,59 %

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	166	di	182

Parapetto tetto piano

La porzione di tetto piano accessibile per la manutenzione degli impianti presenta un parapetto simile a quello della scale, esso oltre a fungere da protezione contribuisce anche a mascherare gli impianti presenti. Per la verifica si prevede di utilizzare una struttura metallica realizzata con profili cavi in acciaio S275 J0, simile a quella realizzata per le scale interne, la struttura viene poi rivestita come da progetto architettonico. La struttura è composta dai sequenti elementi:

- Montanti 40x40 spessore 4 mm;
- Traverso superiore 40x80 spessore 4 mm;
- Traverso inferiore 40x40 spessore 4 mm;

La scala viene verificata nella varie configurazioni di carico, prevedendo una spinta orizzontale pari a 1 kN/m applicati alla quota superiore del parapetto (sovraccarico riferibile a coperture accessibili per sola manutenzione e riparazione, secondo tabella 3.1.II delle NTC 2018).

Sul tetto piano sono quindi presenti due parapetti uno più corto posto sulla facciata est ed uno più lungo posto sulla facciata ovest, di seguito si riportano le schermate con la verifica riportata in termini di sfruttamento percentuale della struttura (verificato per valori inferiori al 100%).

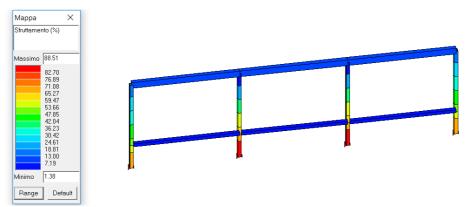


Figura 94: Verifica del parapetto posto sulla facciata est, sfruttamento percentuale massimo 88,51 %, utilizzando due montanti intermedi.

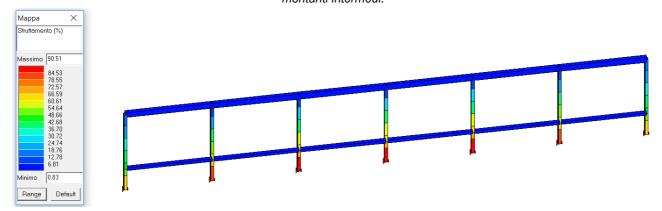


Figura 95: Verifica del parapetto posto sulla facciata ovest, sfruttamento percentuale massimo 90,51 %, utilizzando cinque montanti intermedi.

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	167	di	182

15 VASCA ANTINCENDIO

Il progetto e le verifiche degli elementi strutturali fanno riferimento alle azioni e alle prescrizioni riportate nelle Nuove Norme Tecniche per le Costruzioni di cui al D.M. 17.01.2018. Sono inoltre stati presi in considerazione l'Eurocodice 2 e L'Eurocodice 8, che fornisce principi e regole per la progettazione antisismica di sistemi strutturali, quali appunto serbatoi in cemento armato.

Le verifiche geotecniche a carico limite sono state effettuate con l'approccio 2 (A1+M1+R3). Le verifiche vengono eseguite in due condizioni distinte: vasca piena e vasca vuota.

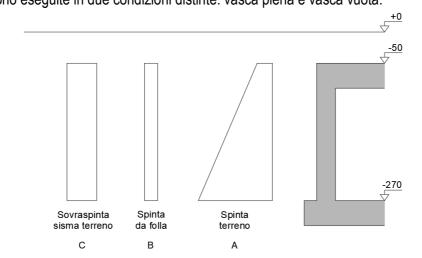


Figura 96: Schema "vasca vuota" – forze orizzontali

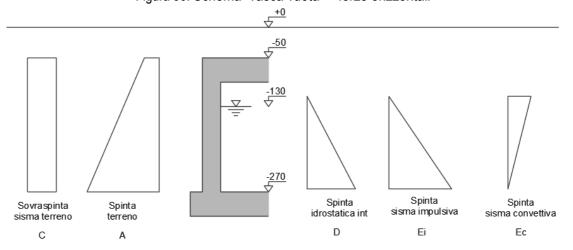


Figura 97: Schema "vasca piena" - forze orizzontali

CASTELLO CARRARESI - INTERVENTO DI RESTAURO E
RIQUALIFICAZIONE FUNZIONALE

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	168	di	182

15.1 DESCRIZIONE DEL MANUFATTO

La nuova vasca antincendio, realizzata in calcestruzzo armato gettato in opera, presenta uno sviluppo in pianta a "L" che si protrae parzialmente all'interno del fabbricato ex lavanderia, ospitante il locale tecnico. Le dimensioni in pianta della vasca principale sono 14,60 m x 7,85 m.

Le pareti avranno un'altezza di 1,80 m e spessore di 0,30 m. La platea di fondazione avrà uno spessore pari a 0,40 m, mentre la soletta di chiusura sarà realizzata con un solaio a lastre prefabbricate tipo predalles di spessore 5+32+5 cm. Il battente idrico del pozzetto è pari a 1,40 m e il franco è 0,40 m. Il manufatto è totalmente interrato: le fondazioni sono poste a -2,30 m dal p.c.

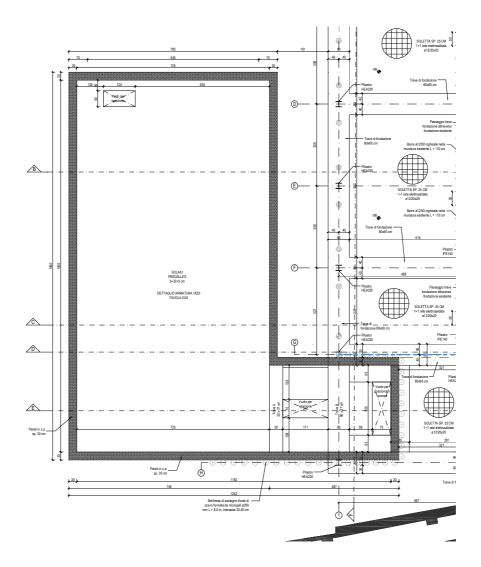


Figura 98: Planimetria soletta superiore vasca

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	169	di	182

15.2 AZIONI AGENTI

Pesi materiali strutturali

Cemento armato $\gamma = 25,0 \text{ kN / m}^3$ Solaio pradalles 5+32+5 cm: 5,15 kN / m²

Carico permanente

Il carico permanente stimato è dato dai vari strati soprastanti nella condizione di massimo carico:

	Spessore (m)	Densità (kN/m³)	Carico dist (kN/m²)
Terreno di riporto	0,50	19,00	9,50

Il carico permanente distribuito è quindi di 9,50 kN / m².

Carico da folla sulla soletta e terreno

Si considera un carico uniformemente distribuito pari a 5,00 kN / m² in accordo con i carichi riportati in tabella 3.1.II delle NTC18 – categoria C3.

Spinta del terreno in condizioni statiche

Si considera la struttura come rigida ed indeformabile.

La spinta a riposo può essere calcolata con l'espressione di Coulomb:

$$\sigma_a = k_o \sigma_{Vo} = (1 - \text{sen } \Phi) \gamma z$$

dove y è il peso del terreno

 k_0 è il coefficiente di spinta a riposo pari a 1 – sen Φ = 0,577

Pertanto la distribuzione delle tensioni litostatiche risulta la seguente:

$$\sigma'(z = 0.50) = k_0 y z = 0.577 x 19.0 x 0.50 = 5.49 kN / m^2$$

$$\sigma'(z = 2.70) = k_0 \gamma z = 0.577 \times 19.0 \times 2.30 = 29.62 \text{ kN} / \text{m}^2$$

Spinta idrostatica interna

La spinta interna idrostatica viene considerata solamente nella configurazione di vasca piena.

La spinta sulle pareti ha andamento triangolare decrescente verso l'alto ed è tale per cui pressione idrostatica alla base, agente su una fascia di lunghezza unitaria vale:

Po =
$$y_w x h = 10.0 x 2.80 = 28 kN / m^2$$

La spinta sulla platea di base è pari a:

$$Pv = \gamma_w x h = 10.0 x 2.80 = 28 kN / m^2$$

Carico da folla sulle pareti

Ai fini del calcolo delle spinte orizzontali che il terreno trasmette al manufatto, i sovraccarichi da folla agenti sul terreno ad esso adiacente sono schematizzati con un carico verticale uniforme di entità pari a:

$$P = k_0 q = 2,89 kN / m^2$$
.

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	170	di	182

Spinta del terreno in condizioni sismiche

La spinta in presenza di sisma orizzontale è valutata secondo la teoria di Wood.

CARATTERISTICHE	DEL SITO	SISMICO
Vincolo muro	RIGIDO	(muro vincolato alla traslazione, su pali, ecc.)
a _g / g	0,0960	adimensionale, nella UNI EN 1998-5:2005 è chiamato α
Ss	1,5000	
S _T	1,0000	
S = S _S x S _T	1,5000	
$a_{max}/g = S \times a_g/g$	0,1440	(adimensionale)
βm	1,00	per muro "Rigido" uguale a 1
k _h	0,14400	coeff. sismico orizzontale
$k_v = 0.5 \times k_h$	0,07200	coeff. sismico verticale

φ'	25°		valore caratteristico dell'angolo di attrito del terreno
ô	17°		valore caratteristico dell'angolo di attrito terra-muro (di solito 2/3 φ per muri in c.a. in opera)
γ*	19,00	kN/mc	peso specifico del terreno
γ _φ .	1,00		coeff. riduttivo caratteristiche terreno
φď	25,00°		valore di progetto dell'angolo di attrito del terreno
δd	16,67°		valore di progetto dell'angolo di attrito terra-muro

CARATTERI	STICHE MURO			
ψ	90°		inclinazione della parete del muro rivolta a monte	
β	0°		inclinazione della superficie del terrapieno	
H	3,10	m	altezza totale del muro compresa fondazione	

SPINTA STATICA	(
$k_0 = 1 - \operatorname{sen} \varphi$	0,5774		coeff. di spinta a riposo calcolato con la formula di Jaky
S _(stat)	52,71	kN	essendo il muro "Rigido" è calcolata con k₀

SPINTA SISMICA SU STRUTTURE RIGIDE (UNI EN 1998-5:2005 app. E.9)						
ΔE _{d (sism)}	26,29	kN	incremento di spinta dovuto al sisma, applicato a metà altezza del muro (formula di Wood)			

La spinta delle terra in fase sismica è pari a 26,29 kN / m, corrispondente ad una pressione uniformemente distribuita pari a:

 $q_{ts} = Qs / h = 26,29 / 2,20 = 11,95 kN / m^2$

Spinta dell'acqua in condizioni sismiche (sloshing)

Per la valutazione della spinta dell'acqua in condizioni sismiche, si considera che, per effetto di un'accelerazione laterale ag, la massa liquida in prossimità del pelo libero non tende a traslare rigidamente con il serbatoio, ma dà origine ad onde di tipo convettivo. Vicino al fondo, invece, il liquido si muove in maniera solidale con il serbatoio, andando ad incrementare la massa inerziale della struttura. Il calcolo delle spinte su ciascuna parete viene effettuato stimando l'azione dovuta alla massa d'acqua della porzione di serbatoio di forma rettangolare ortogonale alla stessa.

CASTELLO CARRARESI - INTERVENTO DI RESTAURO E
RIQUALIFICAZIONE FUNZIONALE

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	171	di	182

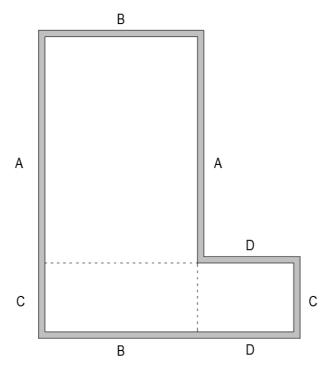
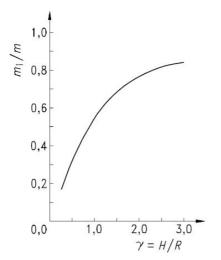



Figura 99: Identificazione pareti spinta dell'acqua in caso di sisma

Si riporta di seguito una valutazione semplificata dell'acqua in condizioni sismiche. Per ciscuna parete, la massa rigido-impulsiva e quella convettiva vengono calcolate attraverso i diagrammi contenuti in figura A.2 e A.4 UNI ENV 1998-4:2000:

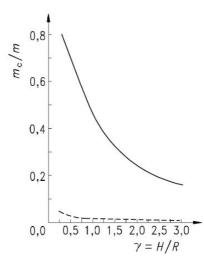


Figura 100: Diagramma figura A.2 - UNI ENV 1998-4:2000 Figura 101: Diagramma figura A.4 - UNI ENV 1998-4:2000

I periodi Ti e Tc del moto impulsivo e convettivo sono calcolati secondo la seguente equazione:

$$T_1 = 2\pi \left(\frac{L/g}{\frac{\pi}{2} tanh(\frac{\pi H}{2L})}\right)^{0.5}$$
 [eq. A.45 - UNI ENV 1998-4:2000]

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	172	di	182

Per il calcolo dell'accelerazione spettrale si utilizzano le formule [3.2.2] del D.M. 17.01.2018. A favore di sicurezza si pone $T_B < T_I < T_C$.

Parete	H [m]	L [m]	H/L	B [m]	m _i / m	m _c / m	m [kN]	mi [kN]	m _c [kN]	m _w [kN]	T _c [s]	Se(T _i)	Se(T _c)	q _i [kN/m]	q _c [kN/m]
Α	1,40	3,63	0,39	14,00	0,249	0,751	1421,0	353,8	1067,2	157,5	4,140	0,377	0,022	13,76	1,71
В	1,40	7,00	0,20	7,25	0,200	0,800	1421,0	284,2	1136,8	81,6	7,678	0,377	0,007	19,00	1,02
С	1,40	5,93	0,24	3,25	0,200	0,800	539,2	107,8	431,3	36,6	6,539	0,377	0,009	16,74	1,19
D	1,40	1,63	0,86	4,60	0,450	0,550	209,3	94,2	115,1	51,8	2,181	0,377	0,081	11,95	2,02

Si assumono pertanto le seguenti azioni:

Pareti B, C: $q_i = 19,00 \text{ kN / m}$ $q_c = 1,50 \text{ kN / m}$ Pareti A, D: $q_i = 15,00 \text{ kN / m}$ $q_c = 2,00 \text{ kN / m}$

In maniera semplificata, la distribuzione delle pressioni viene approssimata con una distribuzione triangolare lineare (crescente con l'aumentare della profondità nel caso del moto impulsivo e decrescente per il moto convettivo):

Parete	q _i [kN/m]	q _i (-1,30) [kN/m²]	q _i (-2,70) [kN/m²]	q _c [kN/m]	q _c (-1,30) [kN/m²]	q _c (-2,70) [kN/m²]
B, C	19,00	0,00	27,14	1,50	2,14	0,00
A, D	15,00	0,00	21,43	2,00	2,85	0,00

15.3 VERIFICA A SOLLEVAMENTO

Si è verificato che il peso della struttura sia sufficiente a garantire che questa non galleggi. I coefficienti parziali delle azioni nella verifica sono indicate nella tabella 6.2.III delle NTC 18 e sono i seguenti:

- yf =0,9 per carichi permanenti favorevoli,
- yf =1,1 per carichi permanenti sfavorevoli.

Poiché la falda si trova al di sotto del piano della fondazione, la sottospinta della falda risulta nulla.

15.4 VERIFICHE GEOTECNICHE

Con l'utilizzo delle Norme Tecniche sulle Costruzioni DM 17 gennaio 2018 si dovranno valutare la sicurezza e le prestazione di un'opera o di una parte di essa in relazione agli stati limite che si possono verificare durante la vita nominale. Stato limite è la condizione superata la quale l'opera non soddisfa più le esigenze per le quali è stata progettata.

In particolare le opere e le varie tipologie strutturali dovranno possedere i seguenti requisiti:

i. Sicurezza nei confronti di stati limite ultimi (SLU): capacità di evitare crolli, perdite di equilibrio e dissesti gravi, totali o parziali, che possono compromettere l'incolumità delle persone ovvero

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	173	di	182

comportare la perdita di beni, ovvero provocare vari danni ambientali e sociali, ovvero mettere fuori servizio l'opera;

- ii. Sicurezza nei confronti di stati limite di esercizio (SLE): capacità di garantire le prestazioni previste per le condizioni di esercizio;
- iii. Robustezza nei confronti di azioni eccezionali: capacità di evitare danni sproporzionati rispetto all'entità delle cause innescanti quali incendio, esplosioni, urti.

Nell'ambito del metodo degli stati limite la misura della sicurezza si ottiene con il "Metodo semi-probabilistico dei Coefficienti Parziali" di sicurezza espresso dall'equazione:

 $Rd \ge Ed$ ovvero $Rd - Ed \ge 0$

dove:

Rd = valore di progetto della resistenza del sistema geotecnico;

Ed = valore di progetto dell'azione o dell'effetto dell'azione.

L'effetto delle azioni e resistenza sono espresse in funzione:

- delle azioni di progetto VFFk
- dei parametri di progetto X_K/y_M
- e dalla geometria di progetto.

L'effetto delle azioni può essere valutato direttamente come Ed = Ek*yE. Nella formulazione della resistenza Rd, compare esplicitamente un coefficiente y_R che opera direttamente sulla resistenza del sistema.

La verifica della suddetta condizione (Ed ≤Rd) è stata effettuata impiegando diverse combinazioni di gruppi di coefficienti parziali, rispettivamente definiti per le azioni (A1 e A2), per i parametri geotecnici (M1 e M2) e per le resistenze (R3).

	Effetto	Coefficiente Parziale γ_F (o γ_E)	EQU	(A1)	(A2)
Carichi permanenti G ₁	Favorevole	γ_{G1}	0,9	1,0	1,0
	Sfavorevole		1,1	1,3	1,0
Carichi permanenti G ₂ ⁽¹⁾	Favorevole	γ_{G2}	0,8	0,8	0,8
	Sfavorevole		1,5	1,5	1,3
Azioni variabili Q	Favorevole	γ_{Qi}	0,0	0,0	0,0
	Sfavorevole		1,5	1,5	1,3

Figura 102: Coefficienti parziali per le azioni o per l'effetto delle azioni (tab. 6.2.1)

E-mail: infopd@smingegneria.it - Web: www.smingegneria.it

CASTELLO CARRARESI - INTERVENTO DI RESTAURO E	E Elaborato: APPR_31_ST_RDC			
RIQUALIFICAZIONE FUNZIONALE	File:	APPR_31_ST_RDC.doc		
PROGETTO ESECUTIVO	Rev.	00	del	Luglio 2018
RELAZIONE DI CALCOLO	Pagina	174	di	182

Parametro	Grandezza alla quale applicare il coefficiente parziale	Coefficiente $parziale \gamma_M$	(M1)	(M2)
Tangente dell'angolo di resi- stenza al taglio	$ an {\phi'}_k$	$\gamma_{\phi'}$	1,0	1,25
Coesione efficace	c' _k	γ_c	1,0	1,25
Resistenza non drenata	c _{uk}	Ycu	1,0	1,4
Peso dell'unità di volume	γγ	γγ	1,0	1,0

Figura 103: Coefficienti parziali per i parametri geotecnici del terreno (tab. 6.2.II)

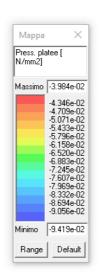
Verifica	Coefficiente
	parziale
	(R3)
Carico limite	$\gamma_R = 2.3$
Scorrimento	$\gamma_R = 1.1$

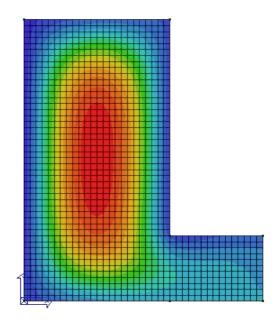
Figura 104: Coefficienti parziali γ_R per le verifiche agli stati limite ultimi di fondazioni superficiali (tab. 6.4.l)

La verifica perraggiungimento del carico limite è stata eseguita applicando la combinazione (A1+M1+R3) di coefficienti parziali prevista dall'Approccio 2, tenendo conto dei valori dei coefficienti parziali riportati nelle Tabelle 6.2.I, 6.2.II e 6.4.I.

N° strato	Terreno	Z _{sup} [m]	Z _{inf} [m]	h _{strato} [m]	γ _t [kN/m³]	γ' _t [kN/m³]	φ	c' [kPa]	c _u [kPa]	σ _{v,strato} [kN/m ³]	σ' _{v,strato} [kN/m ³]
1	tipo di terreno	0,00	3,20	3,20	19,00	19,00	-	-	-	60,80	60,80
2	tipo di terreno	3,20	3,20	0,00	19,00	19,00	-	-	-	60,80	60,80
3	tipo di terreno	3,20	3,20	0,00	19,00	19,00	-	-	-	60,80	60,80
4	tipo di terreno	3,20	3,20	0,00	19,00	19,00	-	-	-	60,80	60,80
5	tipo di terreno	3,20	3,20	0,00	19,00	19,00	-	1	1	60,80	60,80
5 - Posa	tipo di terreno	3,20	3,20	0,00	19,00	19,00	25,00	0,00	0,30	60,80	60,80

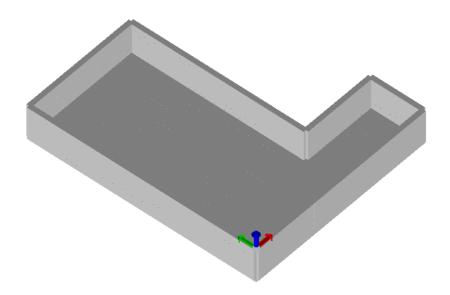
PORTANZA				
	[MPa]	APP.2 GEO		
		(A1-M1-R3)		
Portanza limite	q _{cp,LIM}	1,36		
Portanza di progetto	q cp,Rd	0,59		




PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	175	di	182

Il carico limite di progetto è pari a: $q_{lim} = 0,59 \text{ MPa} = 5,90 \text{ daN / cm}^2$ La tensione massima agente, nella combinazione più gravosa, è pari a:


 σ_{max} = 0,872 daN / cm² q_{lim} > σ_{max} verificata

15.5 VERIFICHE STRUTTURALI VASCA

La verifica delle strutture in c.a. è stata eseguita mediante modello di calcolo realizzato con software di calcolo ProSap della 2s.i. srl. Il solaio invece, previsto con lastre predalles, è stato verificato separatamente.

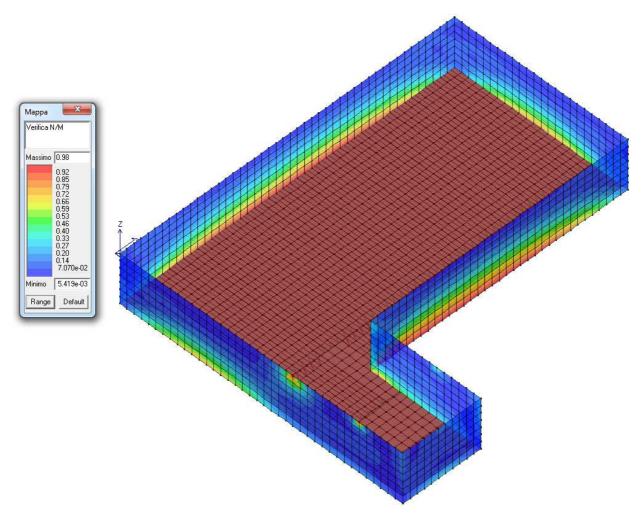
Si riportano di seguito le armature base dei vari elementi strutturali:

Platea - sp.40 cm: dir x: ø12/20 cm superiori ed inferiori

dir y: ø12/20 cm superiori ed inferiori

Pareti - sp.30 cm: dir x: ø12/20 cm superiori ed inferiori

dir y: ø12/20 cm superiori ed inferiori


PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	176	di	182

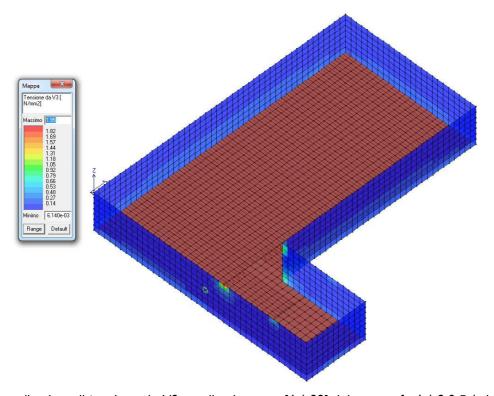
Si riportano di seguito, in maniera sintetica, i risultati delle verifiche strutturali eseguite sul manufatto.

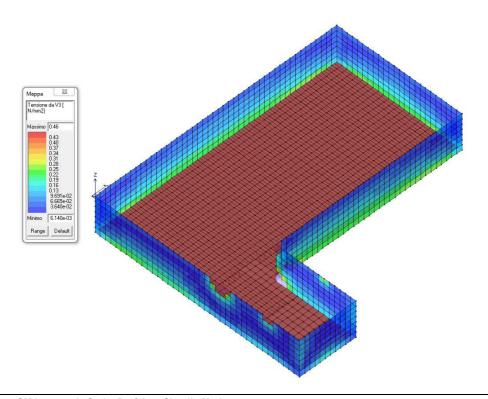
Verifica delle pareti

Verifica N/M Permette la visualizzazione, mediante mappa di colore, dei valori massimi del rapporto Sd/Su con sollecitazioni ultime proporzionali; il valore del rapporto deve essere minore o uguale a 1 per verifica positiva (Sd = sollecitazione di progetto, Su = sollecitazione ultima);

Rapporto verifica massimo: 0,98 < 1,0

Tensione da V3 Consente di visualizzare mediante mappa cromatica la massima tensione tangenziale. In ogni punto viene riportato il valore massimo della tensione derivante dalle azioni T13 e T23. La tensione da V3 è calcolata a partire dall'Azione V (sollecitazione) e indica il taglio per unità di lunghezza divisa per l'altezza utile Hu nel caso di verifica agli SLU

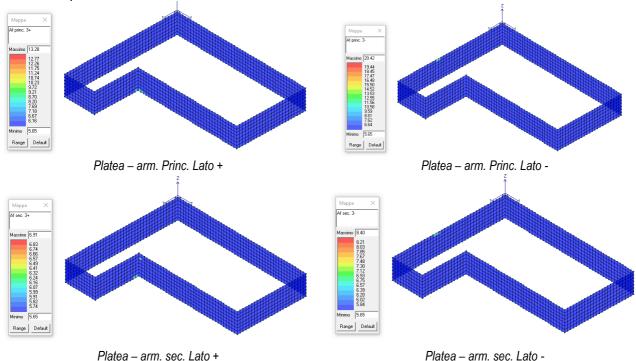



CASTELLO CARRARESI - INTERVENTO DI RESTAURO E
RIQUALIFICAZIONE FUNZIONALE

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	177	di	182

Si confronta ora il valore di tensione da V3 con il valore v_{min} [4.1.23] del paragrafo 4.1.2.3.5.1 del D.M. 2018. Dove la tensione risulta inferiore al valore v_{min} = 0,46 MPa, non è necessaria specifica armatura a taglio Come evidenziato dal contour nell'immagine sottostante, nelle zone lungo gli spigoli del manufatto si verificano zone sottoposte a sforzi concentrati elevati con valori superiori a v_{min} (zone prive di colorazione). dove tuttavia è presenta un'armatura integrativa. La verifica è pertanto soddisfatta.



PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	178	di	182

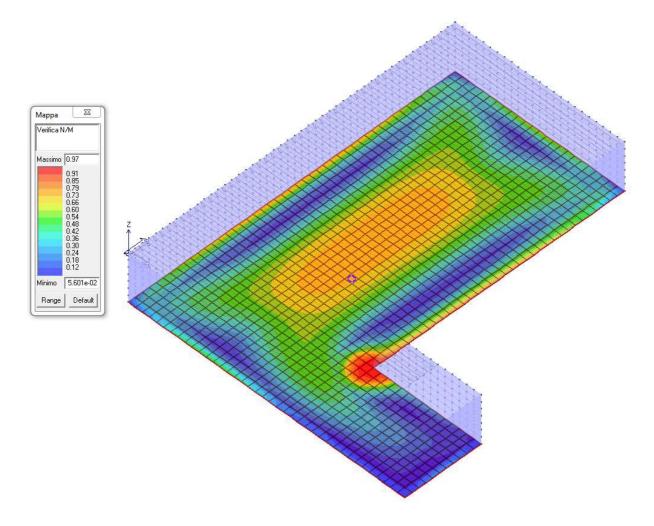
Valori armatura pareti Permette la visualizzazione, mediante valori numerici, dell'armatura principale e secondaria presenti in cm²/m.

Armatura verticale $A_{s \text{ vert}} = \emptyset 12/20 = 5.65 \text{ cm}^2$ Armatura orizzontale $A_{s \text{ orizz}} = \emptyset 12/20 = 5.65 \text{ cm}^2$

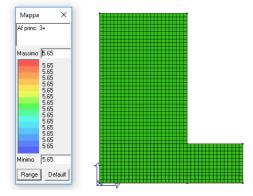
In alcune zone limitate, concentrate sugli spigoli del manufatto, è necessaria un'armatura integrativa.

Come evidenziato dal contour, la verifica è soddisfatta ad eccezione delle zone sottoposte a concentrazioni di sforzo. In particolare si notano degli incrementi di tensioni in corrispondenza degli spigoli della vasca. In tali zone sono presenti specifiche armature integrative longitudinali nelle due direzioni. Nella soletta di chiusura, nella zona centrale in corrispondenza della parete sottostante, si prevede un'armatura integrativa

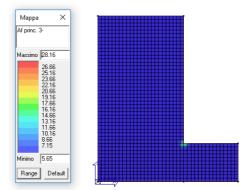
Verifica della platea di fondazione:


La platea viene armata con rete elettrosaldata a maglia quadrata 20x20 con diametro Ø12mm **Verifica N/M** Permette la visualizzazione, mediante mappa di colore, dei valori massimi del rapporto Sd/Su con sollecitazioni ultime proporzionali; il valore del rapporto deve essere minore o uguale a 1 per verifica positiva (Sd = sollecitazione di progetto, Su = sollecitazione ultima);

CASTELLO CARRARESI - INTERVENTO DI RESTAURO				
RIQUALIFICAZIONE FUNZIONALE				


PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

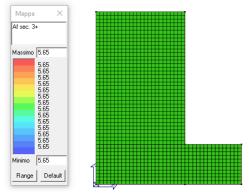
Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	179	di	182

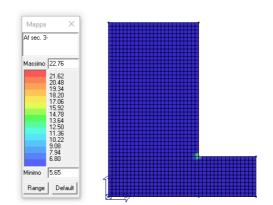


Rapporto verifica massimo: 0,97 < 1,0

Valori armatura platea Permette la visualizzazione, mediante valori numerici, dell'armatura principale e secondaria presenti in cm²/m.

Platea - arm. Princ. Lato +


Platea – arm. Princ. Lato -



PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	180	di	182

Platea - arm. sec. Lato +

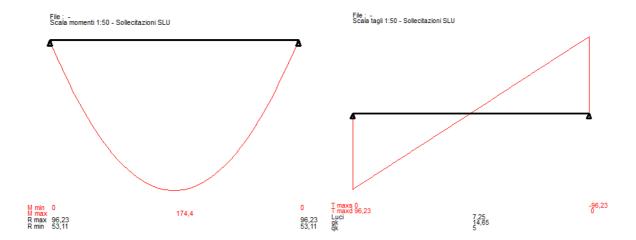
Platea - arm. sec. Lato -

Armatura verticale As vert = Ø12/20 = 5.65 cm2 Armatura orizzontale As orizz = Ø12/20 = 5.65 cm2

Verifica del solaio predalles

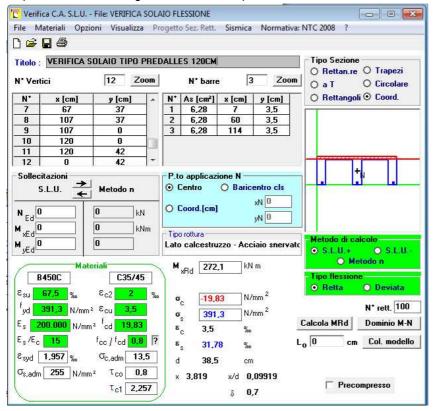
Carichi permanenti: 14.65 kN/m^2

Carichi variabili: 5 kN/m^2


Calcolo delle sollecitazioni considerando 1m di solaio:

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	181	di	182


Sollecitazioni di calcolo massime:

 $M_{Ed}=174kNm$

V_{Ed}=96kN

VERIFICA A FLESSIONE

Si ipotizza di armare ogni travetto con 2 φ 20

La verifica risulta soddisfatta in quanto M_{Rd}=272.1kNm > M_{Ed}=174 kNm

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Elaborato:	APPR_31_ST_RDC		
File:	APPR_31_ST_RDC.doc		
Rev.	00	del	Luglio 2018
Pagina	182	di	182

VERIFICA A TAGLIO

Taglio resistente considerando una lastra da 120 cm:

RESISTENZA DI ELEMENTI SENZA ARMATURA A TAGLIO									
GEOMETR	GEOMETRIA SEZIONE E MATERIALI						V_{Ed}		
b _w (cm)	h (cm)	c (cm)	d (cm)	R _{ck} (MPa)	f _{yk} (MPa)	(kN)	(kN)		
40,00 42,00 2,50		2,50	39,50 45,00 450,0		450,00	0,00	0,00		
Resistenza	Resistenza a taglio senza armatura specifica								
A _{SL,tot}	(mmq)	k	v _{min} (MPa)	ρL	$\sigma_{\text{cp}} (\text{MPa})$	(kN)			
0,000		1,71	0,48	0,0000	0	75,68	0,00		

Calcolo del taglio resistente considerando 1 m di solaio V_{Rd} =75.68/1.2=63.1kN < V_{Ed}

Per assorbire gli sforzi in eccesso si prevede di realizzare una fascia semipiena di 125cm dall'appoggio.

VERIFICA A TAGLIO FASCIA SEMIPIENA

RESISTENZA DI ELEMENTI SENZA ARMATURA A TAGLIO									
GEOMETE	GEOMETRIA SEZIONE E MATERIALI								
b _w (cm)	h (cm)	c (cm)	d (cm)	R _{ck} (MPa)	f _{yk} (MPa)	(kN)	(kN)		
80,00	42,00	3,50	38,50	45,00	450,00	0,00	0,00	ок	
Resistenz	Resistenza a taglio senza armatura specifica							O.K	
A _{SL,tot} (mmq) k			v _{min} (MPa)	ρL	σ_{cp} (MPa)	(kN)			
0,000		1,72	0,48	0,0000	0	148,71	0,00		

La verifica risulta soddisfatta in quanto il taglio resistente Vrd=148.71/1.2=123.9kN risulta maggiore del taglio sollecitante $V_{Ed}=96.23kN$.

Verona, Luglio 2018

Prof. Ing. Claudio Modena

