

Comune di PADOVA

Provincia di **PADOVA**

SCANDALETTI LUCIA SCANDALETTI ALESSANDRO

VALUTAZIONE DI COMPATIBILITÀ IDRAULICA AI SENSI DEL D.G.R.V. 2948/2009 RELATIVA ALLA ZONA "RESIDENZIALE 4 DI ESPANSIONE" SITA IN PADOVA (PD) – VIA BEATO ARNALDO DA LIMENA - VIA OGLIO; FG. 4; MAPP. 645 (porzione) – 647 (porzione).

RELAZIONE TECNICA

Dr. Geol. Devi Fincato

Albo dei Geologi della regione Veneto N. 549

Padova, 07/12/2018

Rev.2/2018

Sommario

VERIFICA DI COMPATIBILITA' IDRAULICA	3
1.0 LOCALIZZAZIONE DELL'INTERVENTO	3
2.0 DESCRIZIONE INTERVENTO	4
3.0 RIFERIMENTI NORMATIVI	6
4.0 INTRODUZIONE AI METODI DI CALCOLO UTILIZZATI	7
4.1 Curve di possibilità pluviometrica	8
4.2 Coefficienti di deflusso	9
4.3 Stima dei volumi d'invaso	11
5.0 INDICAZIONI PROGETTUALI, SCELTE OPERATIVE E PRESCRIZIONI TECNICHE	18
6.0 CARATTERISTICHE DELLE CONDOTTE – ACQUE BIANCHE 1	19
6.1 Descrizione della rete e delle misure compensative adottate	19
6.2 Dimensionamento del dispositivo di laminazione	19
7.0 INDICAZIONE PER LA MANUTENZIONE	21

RELAZIONE TECNICA VERIFICA DI COMPATIBILITA' IDRAULICA

1.0 LOCALIZZAZIONE DELL'INTERVENTO

L'area oggetto d'intervento edilizio risulta ubicata nella parte nord della città di Padova compresa tra Via Oglio e Via Beato Arnaldo da Limena in area pianeggiante ed in un contesto a medio-bassa antropizzazione con la predominanza di ampi spazi a verde ed edifici residenziali. Il sito ha le seguenti coordinate geografiche (datum WGS84) - Si veda estratti in Fig. 1 e 2:

Latitudine: 45,45013° N; Longitudine: 11,87082° E;

Altitudine: 14 - 15 m.s.l.m.m.

Fig. 1 - Estratto aerofotogrammetrico

Fig. 2 - Estratto CTR 1:2.000

2.0 DESCRIZIONE INTERVENTO

Attualmente il lotto di terreno si presenta libero e con la presenza di coltivazioni in atto. L'intervento edilizio di nuova realizzazione interesserà parte di esso con l'edificazione di due fabbricati residenziali.

La superficie <u>complessiva</u> dell'ambito d'intervento è di **7.764.17 m²** (0.76 Ha) di cui 2.554.07 m² saranno destinati a "verde pubblico attrezzato di interesse generale" ed altri 305 m² ad area a verde pubblico (per complessivi 2.859.07 m²). Nella parte prospiciente Via Oglio sarà ampliata la sede stradale e saranno realizzati dei marciapiedi per complessivi 325,75 m² e un'area a parcheggi per 133.47 m².

La superficie fondiaria rimanente, di **4.378.03 m²**, è <u>destinata per nuovi lotti edificabili</u> e che sarà in gran parte coperta dai corpi dei fabbricati, marciapiedi e aree di manovra e a giardino ad uso dei nuovi edifici (fig. 3).

(Fig. 3 – Planimetria regime delle aree)

3.0 RIFERIMENTI NORMATIVI

I riferimenti normativi in materia di regolamentazione degli aspetti idraulici della progettazione sono stati introdotti con la Dgr n. 1322 del 10 maggio 2006 e della successiva Dgr 1841/07, nuova disciplina Regionale per il governo del Territorio. Con l'entrata in vigore del Dgr n. 2948 del 6 ottobre 2009, si sono fornite le indicazioni per la formazione degli strumenti urbanistici.

Con riferimento alle "indicazioni operative" contenute nell'allegato A alla Dgr di cui sopra, che definisce le classi d'intervento in relazione all'impermeabilizzazione potenziale derivante dall'attuazione dei nuovi strumenti urbanistici, l'intervento in oggetto si classifica come a "modesta impermeabilizzazione potenziale" (intervento di 0,76 ha e pertanto con superfici inferiore a comprese tra 0.1 e 1 ha); per tale classe d'intervento è necessario che lo studio idraulico preveda "oltre al dimensionamento dei volumi compensativi cui affidare funzioni di laminazione delle piene è opportuno che le luci di scarico non eccedano le dimensioni del tubo di diametro 200 mm e che i tiranti idraulici ammessi nell'invaso non eccedano il metro".

Class	e di Intervento	Definizione
Trascurabile potenziale	impermeabilizzazione	intervento su superfici di estensione inferiore a 0.1 ha
Modesta potenziale	impermeabilizzazione	Intervento su superfici comprese fra 0.1 e 1 ha
Significativa potenziale	impermeabilizzazione	Intervento su superfici comprese fra 1 e 10 ha; interventi su superfici di estensione oltre 10 ha con Imp<0,3
Marcata potenziale	impermeabilizzazione	Intervento su superfici superiori a 10 ha con Imp>0,3

(Tab. 1 - superfici di riferimento)

L'intervento edilizio in particolare prevede la riorganizzazione delle superfici con superfici coperte impermeabili, semipermeabili ed aree a verde.

In seguito all'evento alluvionale del Settembre 2007, con O.P.C.M. n.3621 del 18.10.2007, avente per oggetto "Interventi urgenti di protezione civile diretti a fronteggiare i danni conseguenti gli eccezionali eventi meteorologici che hanno colpito parte del territorio della Regione Veneto nel giorno 26 settembre 2007", è

stato nominato un Commissario Delegato che ha il compito di provvedere "alla pianificazione di azioni ed interventi di mitigazione del rischio conseguente all'inadeguatezza dei sistemi preposti all'allontanamento e allo scolo delle acque superficiali in eccesso, al fine della riduzione definitiva degli effetti dei fenomeni alluvionali ed in coerenza con gli altri progetti di regimazione delle acque, predisposti per la tutela e la salvaguardia della terraferma veneziana, nel territorio provinciale di Venezia e negli altri territori comunali del Bacino Scolante in Laguna individuati dal "Piano direttore 2000".

Nell'ambito della propria attività, il Commissario Delegato, con la collaborazione degli enti preposti alla gestione delle acque superficiali (Comuni e Consorzi di Bonifica), ha emanato una serie di Ordinanze (Ordinanze n. 2 e 3 e 4 del 22 gennaio 2008) che impongono la redazione di relazioni di compatibilità idraulica a tutti gli interventi edificatori che comportano un'impermeabilizzazione superiore a 200 m²; quindi ponendo un limite maggiormente restrittivo di quello della norma Regionale.

I contenuti delle ordinanze del Commissario, per i comuni colpiti dall'evento del 26 Settembre 2007 di cui il comune di PADOVA (PD) ne fa parte, rendendo immediata, in funzione delle soglie dimensionali, l'individuazione nella necessità o meno di redazione di Valutazione di Compatibilità Idraulica nonché del soggetto competente al rilascio del parere.

La trattazione riportata a seguire si atterrà a tali indicazioni e farà proprie inoltre le prescrizioni del Consorzio di Bonifica competente per il territorio (Consorzio di Bonifica Bacchiglione).

4.0 INTRODUZIONE AI METODI DI CALCOLO UTILIZZATI

Con riferimento alla Tab. 2 per la **Classe 3** "Modesta Trascurabile impermeabilizzazione potenziale" è opportuno, oltre al dimensionamento dei volumi compensativi cui affidare funzioni di laminazione delle piene, che le luci di scarico non eccedano le dimensioni di un diametro di 200 mm.

Di seguito <u>cautelativamente</u> si adotta il <u>criterio di dimensionamento n. 2</u> - prevista dalle ordinanze del Commissario delegato per l'emergenza concernente gli eccezionali eventi del 26 settembre 2007 (Rif. D.G.R. 133/06).

Riferimento	Classificazione intervento	Soglie dimensionali	Criteri da adottare
Ordinanze	Trascurabile impermeabilizzazione potenziale	S* < 200 mq	0
	Modesta impermeabilizzazione	200 mq < S* < 1.000 mq	1
	Modesta impermeabilizzazione potenziale	1.000 mq < S < 10.000 mq	1
D.G.R.	Significativa impermeabilizzazione	10.000 mq < S < 100.000 mq	2
1322/06	potenziale	S> 100.000 mq e Φ < 0,3	2
	Marcata impermeabilizzazione potenziale	S> 100.000 mq e Φ > 0,3	3

(Tab. 2 – criteri da adottare)

4.1 Curve di possibilità pluviometrica

Per lo sviluppo dell'analisi idrologica sull'intervento si utilizzano i dati relativi alle "Linee Guida per la valutazione di compatibilità idraulica" realizzato dal Commissario Delegato concernente gli eccezionali eventi meteorologici del 26 settembre 2007 che hanno colpito parte del territorio della Regione Veneto - OPCM 3261 del 18/10/2007. Le curve di riferimento riguardano il **settore SW** al quale appartiene il comune di Padova (PD).

Le curve di possibilità pluviometrica, riportate nelle tabelle sottostanti (Fig. 4), sono espresse sia con la formula italiana a due parametri (a,n)

$$h = at^n$$

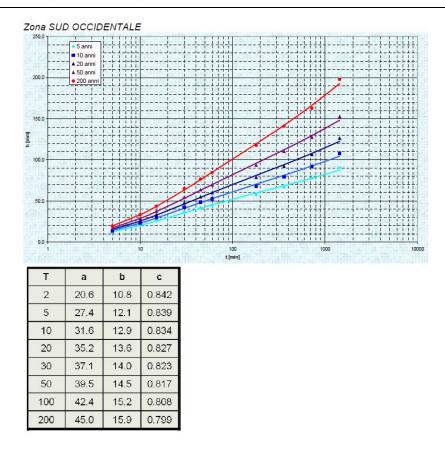
Dove:

- t = durata della precipitazione;
- a, n = parametri della curva forniti dalla elaborazione statistica in dipendenza della zona territoriale di riferimento e del tempo di ritorno assunto.

che con la formula più generale a tre parametri (a,b,c)

$$h = [a/(t+b)^c] * t$$

Dove:


t = durata della precipitazione;

a, b, c = parametri della curva forniti dalla elaborazione statistica in dipendenza della zona territoriale di riferimento e del tempo di ritorno assunto.

Ai fini della presente trattazione si adotta un **tempo di ritorno di 50 anni**, valore di riferimento del tempo di ritorno da assumere negli studi idraulici di dimensionamento delle opere atte a contrastare gli allagamenti. Tale valore del tempo di ritorno fa riferimento a quanto previsto per i PAT/PATI dalla DGR 2948 del 06.10.2009 Allegato "A".

	Z	ona si	ıd-oc	cider	ıtale													
Т	t	tp~ 15 minuti		tp~ 30 minuti			tp~45 minuti			8	tp" 1 ora	а		tp" 3 ore	е	tp~6 ore		
	da :	5 min a	45 min	da	10 min a	a 1 ora	da	15 min	a 3 ore	da	30 min a	a 6 ore	da 4	5 min a	12 ore	da	1 ora a	24 ore
anni	a	n	?	а	n	7	а	n	?	а	n	7	a	n	?	а	n	?
2	4.5	0.533	6.4%	6.6	0.412	3.2%	10.2	0.287	5.0%	13.5	0.221	1.3%	14.2	0.212	0.5%	14.2	0.212	0.4%
5	5.4	0.556	6.2%	7.9	0.437	3.3%	12.4	0.307	5.3%	16.9	0.235	1.5%	18.2	0.220	0.4%	18.5	0.218	0.2%
10	6.0	0.570	6.0%	8.6	0.453	3.3%	13.6	0.322	5.4%	18.8	0.247	1.6%	20.6	0.229	0.7%	21.1	0.224	0.4%
20	6.4	0.582	5.8%	9.2	0.470	3.3%	14.5	0.337	5.5%	20.3	0.260	1.7%	22.6	0.238	1.0%	23.4	0.232	0.7%
30	6.7	0.590	5.7%	9.4	0.479	3.3%	15.0	0.346	5.5%	21.0	0.268	1.7%	23.6	0.244	1.2%	24.6	0.237	0.9%
50	7.0	0.598	5.5%	9.8	0.491	3.3%	15.5	0.358	5.6%	21.9	0.278	1.8%	24.8	0.252	1.4%	26.1	0.243	1.1%
100	7.3	0.610	5.2%	10.1	0.507	3,3%	16.1	0.373	5.6%	22.8	0.292	1.8%	26.3	0.263	1.6%	27.9	0.253	1.4%
200	7.7	0.621	4.9%	10.4	0.524	3.3%	16.5	0.390	5.6%	23.5	0.307	1.9%	27.5	0.275	1.9%	29.5	0.263	1.7%

(Fig. 4 - Curve di possibilità pluviometrica a due e a tre parametri)

4.2 Coefficienti di deflusso

La stima della frazione di afflusso meteorico efficace ai fini del deflusso attraverso una rete di collettori, si realizza mediante il *coefficiente di deflusso* ϕ , inteso come rapporto tra il volume defluito attraverso un'assegnata sezione in un definito intervallo di tempo ed il volume di pioggia precipitato nell'intervallo stesso.

Per le reti destinate alla raccolta delle acque meteoriche valgono, di massima, i coefficienti relativi a <u>piogge di durata oraria</u> (ϕ_1) riportati nella tabella seguente (vedi DGRV 2948/2009 – Allegato "A" – indicazioni operative):

Tipo di superficie	Coefficiente di deflusso φ ₁
Superfici impermeabili (strade, piazzali, tetti ecc.)	0,90
Superfici semi-permeabili (grigliati drenanti ecc)	0,60
Superfici permeabili – aree verdi	0,20
Terreni agricoli	0,10

(Tab. 3)

Per il calcolo del <u>coefficiente di deflusso medio</u>, ϕ_m , da utilizzare nelle successive trattazioni, sono stati assegnati determinati coefficienti ad ogni tipo di superficie ed è stata poi effettuata la media ponderale. Dai dati forniti al progettista delle opere di sistemazione del lotto in oggetto si riportano le computazioni eseguite. L'area efficace oggetto della mitigazione idraulica sarà pari all'area del lotto complessivo $(7.764,17\ m^2)$.

Calcolo del coefficiente di deflusso medio futuro

CALCOLO DEL COEFFICIENTE DI DEFLUSSO MEDIO

DESTINAZIONE	Superficie (mq)	φ	Sxφ
Verde (agrario)	2554.07	0.1	255.41
Verde Pubblico attrezzato	260.95	0.2	52.19
Viabilita' asfaltata - percorso pedonale e isola ecologica	468.08	0.9	421.27
Parcheggi P.I. (semimpermeabile)	133.47	0.6	80.08
Edifici (impermeabile)	1331.07	0.9	1197.96
Aree a verde di pertinenza ad uso esclusivo	964.78	0.2	192.96
Percorsi esclusivi (impermeabile)	2051.75	0.9	1846.58
			0.00
Superficie totale	7764.17		4046.45

$$\varphi \text{ (med)} = \sum \frac{S_i \cdot \varphi_i}{S_{tot}} \qquad \textbf{0.521}$$

Si procede pertanto alla stima dei volumi d'invaso con le considerazioni sopra riportate.

4.3 Stima dei volumi d'invaso

La valutazione del volume d'invaso si basa sulla curva di possibilità pluviometrica, sulle caratteristiche di permeabilità della superficie drenante e sulla portata massima, supposta costante, imposta in uscita dal sistema. Ai fini della presente trattazione, il volume di pioggia precipitata può essere suddiviso in volume d'invaso (volume trattenuto) e volume di pioggia efficace.

Per volume di pioggia efficace s'intende la frazione del volume di pioggia precipitata che non viene trattenuta dal terreno e che è appunto efficace ai fini del deflusso in rete.

Il volume di pioggia precipitata per unità di superficie corrisponde con l'altezza di pioggia h_p , che si ricava dalle curve di possibilità pluviometrica di cui sopra, individuato un tempo di pioggia "critico" (cioè tale da generare valori di picco di portata) per il bacino studiato.

Il massimo volume di invaso, per una data durata t viene calcolato come differenza fra il volume entrato nella vasca V_{in} ed il volume uscito V_{out} dalla stessa nel periodo della durata della precipitazione.

$$V_{\mathit{inv}} = V_{\mathit{in}} - V_{\mathit{out}}$$

Il volume entrante per effetto di una precipitazione di durata t è dato dalla:

$$V_{in} = S* \varphi*h(t)$$

dove:

- ullet ϕ è il coefficiente di afflusso medio, imposto costante, del bacino drenato a monte della vasca:
- S è la superficie del bacino drenato a monte della vasca;
- \bullet h è l'altezza di pioggia, funzione della durata secondo le curve di possibilità pluviometrica.

Il volume che nello stesso tempo esce dalla vasca è dato dalla:

$$V_{out} = Q_{out} * t$$

4.3.1 Utilizzo delle CPP a due parametri

Fissato un tempo di ritorno di 50 anni, i parametri *a* ed *n* delle CPP, per i vari intervalli temporali, sono dati dalla tabella seguente (rif. <u>Zona Sud occidentale SW</u>):

Tempo centrale (min)	15	30	45	60	180	360
а	7.0	9.8	15.5	21.9	24.8	26.1
n	0.598	0.491	0.358	0.278	0.252	0.243

Considerando l'area complessiva di 7.764.17 m² con un coefficiente di afflusso di progetto φ pari a 0.521 ed imponendo un coefficiente udometrico in uscita pari a u = 10 l/s, consigliato dal Consorzio di Bonifica di referenza, si va a calcolare il volume di laminazione mediante l'espressione:

$$V_{inv,cr} = S^*\phi^*a^*(Q_{out}/S^*\phi^*a^*n)^{n/n-1} - Q_{out}^*(Q_{out}/S^*\phi^*a^*n)^{1/n-1}$$

E considerando un tempo critico (t_{cr}) pari a 60 min e rispettivamente a = 21.9 ed n = 0.278 si ha:

$$a(t_{cr}) = a*t_{cr}^{n} = 68.35 \text{ mm}$$

Si riporta di seguito il calcolo del volume d'invaso:

Calcolo del volume di laminazione (Metodo delle precipitazioni)

											V_{min}	294.68
	Durata di pioggia	Sup. Bacino	ä	Dati dell'equazione pluv.	Coeff. di deflusso	Altezza di pioggia	Volume entrante	Coeff. udometrico		Portata uscente	Volume uscente	Volume da invasare
t _p	t	S	а	n	ф	h	V _e	u	Q_u	Q _u	V _u	V
(min)	(ore)	(ha)	(mm)			(mm)	(m ³)	[l/(s ha)]	(I/s)	(m³/ora)	(m³)	(m³)
5	0.08	0.7764	68.35	0.278	0.521	34	138.6	10	7.8	27.95	2.33	136.23
10	0.17	0.776	68.35	0.278	0.521	42	168	10	7.8	27.95	4.66	163.35
15	0.25	0.776	68.35	0.278	0.521	46	188.1	10	7.8	27.95	6.99	181.07
20	0.33	0.776	68.35	0.278	0.521	50	203.7	10	7.8	27.95	9.32	194.40
25	0.42	0.776	68.35	0.278	0.521	54	216.8	10	7.8	27.95	11.65	205.11
30	0.50	0.776	68.35	0.278	0.521	56	228	10	7.8	27.95	13.98	214.05
35	0.58	0.776	68.35	0.278	0.521	59	238	10	7.8	27.95	16.30	221.70
40	0.67	0.776	68.35	0.278	0.521	61	247	10	7.8	27.95	18.63	228.37
45	0.75	0.776	68.35	0.278	0.521	63	255.2	10	7.8	27.95	20.96	234.27
50	0.83	0.776	68.35	0.278	0.521	65	262.8	10	7.8	27.95	23.29	239.52
55	0.92	0.776	68.35	0.278	0.521	67	269.9	10	7.8	27.95	25.62	244.25
60	1.00	0.776	68.35	0.278	0.521	68	276.5	10	7.8	27.95	27.95	248.53
65	1.08	0.776	68.35	0.278	0.521	70	282.7	10	7.8	27.95	30.28	252.42
70	1.17	0.776	68.35	0.278	0.521	71	288.6	10	7.8	27.95	32.61	255.98
75	1.25	0.776	68.35	0.278	0.521	73	294.2	10	7.8	27.95	34.94	259.23

80	1.33	0.776	68.35	0.278	0.521	74	299.5	10	7.8	27.95	37.27	262.23
85	1.42	0.776	68.35	0.278	0.521	75	304.6	10	7.8	27.95	39.60	264.99
90	1.50	0.776	68.35	0.278	0.521	77	309.5	10	7.8	27.95	41.93	267.54
95	1.58	0.776	68.35	0.278	0.521	78	314.2	10	7.8	27.95	44.25	269.90
100	1.67	0.776	68.35	0.278	0.521	79	318.7	10	7.8	27.95	46.58	272.08
105	1.75	0.776	68.35	0.278	0.521	80	323	10	7.8	27.95	48.91	274.10
110	1.83	0.776	68.35	0.278	0.521	81	327.2	10	7.8	27.95	51.24	275.98
115	1.92	0.776	68.35	0.278	0.521	82	331.3	10	7.8	27.95	53.57	277.72
120	2.00	0.776	68.35	0.278	0.521	83	335.2	10	7.8	27.95	55.90	279.33
125	2.08	0.776	68.35	0.278	0.521	84	339.1	10	7.8	27.95	58.23	280.83
130	2.17	0.776	68.35	0.278	0.521	85	342.8	10	7.8	27.95	60.56	282.22
135	2.25	0.776	68.35	0.278	0.521	86	346.4	10	7.8	27.95	62.89	283.50
140	2.33	0.776	68.35	0.278	0.521	87	349.9	10	7.8	27.95	65.22	284.69
145	2.42	0.776	68.35	0.278	0.521	87	353.3	10	7.8	27.95	67.55	285.80
150	2.50	0.776	68.35	0.278	0.521	88	356.7	10	7.8	27.95	69.88	286.81
155	2.58	0.776	68.35	0.278	0.521	89	360	10	7.8	27.95	72.21	287.75
160	2.67	0.776	68.35	0.278	0.521	90	363.1	10	7.8	27.95	74.53	288.61
165	2.75	0.776	68.35	0.278	0.521	91	366.3	10	7.8	27.95	76.86	289.40
170	2.83	0.776	68.35	0.278	0.521	91	369.3	10	7.8	27.95	79.19	290.13
175	2.92	0.776	68.35	0.278	0.521	92	372.3	10	7.8	27.95	81.52	290.78
180	3.00	0.776	68.35	0.278	0.521	93	375.2	10	7.8	27.95	83.85	291.38
185	3.08	0.776	68.35	0.278	0.521	93	378.1	10	7.8	27.95	86.18	291.92
190	3.17	0.776	68.35	0.278	0.521	94	380.9	10	7.8	27.95	88.51	292.41
195	3.25	0.776	68.35	0.278	0.521	95	383.7	10	7.8	27.95	90.84	292.41
200	3.33	0.776	68.35	0.278	0.521	96	386.4	10	7.8	27.95	93.17	293.22
205	3.42	0.776	68.35	0.278	0.521	96	389	10	7.8	27.95	95.50	293.55
210	3.50	0.776	68.35	0.278	0.521	97	391.7	10	7.8	27.95	97.83	293.84
215	3.58	0.776	68.35	0.278	0.521	97	394.2	10	7.8	27.95	100.16	294.08
220	3.67	0.776	68.35	0.278	0.521	98	396.8	10	7.8	27.95	102.48	294.08
225	3.75	0.776	68.35	0.278	0.521	99	399.2	10	7.8	27.95	104.81	294.43
230	3.83	0.776	68.35	0.278	0.521	99	401.7	10	7.8	27.95	107.14	294.55
235	3.92	0.776	68.35	0.278	0.521	100	404.1	10	7.8	27.95	109.47	294.63
240	4.00	0.776	68.35	0.278	0.521	100	406.5	10	7.8	27.95	111.80	294.67
245	4.08	0.776	68.35	0.278	0.521	101	408.8	10	7.8	27.95	114.13	294.68
250	4.17	0.776	68.35	0.278	0.521	102	411.1	10	7.8	27.95	116.46	294.65
255	4.25	0.776		0.278		102	413.4	10		27.95	118.79	294.60
260	4.33	0.776	68.35	0.278	0.521	103	415.6	10	7.8	27.95	121.12	294.50
265	4.42	0.776	68.35	0.278	0.521	103	417.8	10	7.8	27.95	123.45	294.38
270	4.50	0.776	68.35	0.278	0.521	104	420	10	7.8	27.95	125.78	294.23
275	4.58	0.776	68.35	0.278	0.521	104	422.2	10	7.8	27.95	128.11	294.05
280	4.67	0.776	68.35	0.278	0.521	105	424.3	10	7.8	27.95	130.44	293.84
285	4.75	0.776	68.35	0.278	0.521	105	426.4	10	7.8	27.95	132.76	293.60
290	4.83	0.776	68.35	0.278	0.521	106	428.4	10	7.8	27.95	135.09	293.34
295	4.92	0.776	68.35	0.278	0.521	106	430.5	10	7.8	27.95	137.42	293.05
300	5.00	0.776	68.35	0.278	0.521	107	432.5	10	7.8	27.95	139.75	292.74
305	5.08	0.776	68.35	0.278	0.521	107	434.5	10	7.8	27.95	142.08	292.40
310	5.17	0.776	68.35	0.278	0.521	108	436.4	10	7.8	27.95	144.41	292.04
315	5.25	0.776	68.35	0.278	0.521	108	438.4	10	7.8	27.95	146.74	291.66
320	5.33	0.776	68.35	0.278	0.521	109	440.3	10	7.8	27.95	149.07	291.25
325	5.42	0.776	68.35	0.278	0.521	109	442.2	10	7.8	27.95	151.40	290.82
330	5.50	0.776	68.35	0.278	0.521	110	444.1	10	7.8	27.95	153.73	290.37
335	5.58	0.776	68.35	0.278	0.521	110	446	10	7.8	27.95	156.06	289.91
340	5.67	0.776	68.35	0.278	0.521	111	447.8	10	7.8	27.95	158.39	289.42
345	5.75	0.776	68.35	0.278	0.521	111	449.6	10	7.8	27.95	160.71	288.91
350	5.83	0.776	68.35	0.278	0.521	112	451.4	10	7.8	27.95	163.04	288.38
355	5.92	0.776	68.35	0.278	0.521	112	453.2	10	7.8	27.95	165.37	287.84
360	6.00	0.776	68.35	0.278	0.521	112	455	10	7.8	27.95	167.70	287.27
550	0.00	00	55.55	5.270	0.021					00	107.70	-01.21

365	6.08	0.776	68.35	0.278	0.521	113	456.7	10	7.8	27.95	170.03	286.69
370	6.17	0.776	68.35	0.278	0.521	113	458.5	10	7.8	27.95	172.36	286.09
375	6.25	0.776	68.35	0.278	0.521	114	460.2	10	7.8	27.95	174.69	285.48
380	6.33	0.776	68.35	0.278	0.521	114	461.9	10	7.8	27.95	177.02	284.85
385	6.42	0.776	68.35	0.278	0.521	115	463.5	10	7.8	27.95	179.35	284.20
390	6.50	0.776	68.35	0.278	0.521	115	465.2	10	7.8	27.95	181.68	283.54
395	6.58	0.776	68.35	0.278	0.521	115	466.9	10	7.8	27.95	184.01	282.86
400	6.67	0.776	68.35	0.278	0.521	116	468.5	10	7.8	27.95	186.34	282.16
405	6.75	0.776	68.35	0.278	0.521	116	470.1	10	7.8	27.95	188.67	281.45
410	6.83	0.776	68.35	0.278	0.521	117	471.7	10	7.8	27.95	190.99	280.73
415	6.92	0.776	68.35	0.278	0.521	117	473.3	10	7.8	27.95	193.32	279.99
420	7.00	0.776	68.35	0.278	0.521	117	474.9	10	7.8	27.95	195.65	279.24
425	7.08	0.776	68.35	0.278	0.521	118	476.5	10	7.8	27.95	197.98	278.48
430	7.17	0.776	68.35	0.278	0.521	118	478	10	7.8	27.95	200.31	277.70
435	7.25	0.776	68.35	0.278	0.521	119	479.6	10	7.8	27.95	202.64	276.91
440	7.33	0.776	68.35	0.278	0.521	119	481.1	10	7.8	27.95	204.97	276.11
445	7.42	0.776	68.35	0.278	0.521	119	482.6	10	7.8	27.95	207.30	275.29
450	7.50	0.776	68.35	0.278	0.521	120	484.1	10	7.8	27.95	209.63	274.46
455	7.58	0.776	68.35	0.278	0.521	120	485.6	10	7.8	27.95	211.96	273.63
460	7.67	0.776	68.35	0.278	0.521	120	487.1	10	7.8	27.95	214.29	272.77
465	7.75	0.776	68.35	0.278	0.521	121	488.5	10	7.8	27.95	216.62	271.91
470	7.83	0.776	68.35	0.278	0.521	121	490	10	7.8	27.95	218.94	271.04
475	7.92	0.776	68.35	0.278	0.521	121	491.4	10	7.8	27.95	221.27	270.15
480	8.00	0.776	68.35	0.278	0.521	122	492.9	10	7.8	27.95	223.60	269.25
485	8.08	0.776	68.35	0.278	0.521	122	494.3	10	7.8	27.95	225.93	268.35
490	8.17	0.776	68.35	0.278	0.521	123	495.7	10	7.8	27.95	228.26	267.43
495	8.25	0.776	68.35	0.278	0.521	123	497.1	10	7.8	27.95	230.59	266.50
500	8.33	0.776	68.35	0.278	0.521	123	498.5	10	7.8	27.95	232.92	265.56
505	8.42	0.776	68.35	0.278	0.521	124	499.9	10	7.8	27.95	235.25	264.61
510	8.50	0.776	68.35	0.278	0.521	124	501.2	10	7.8	27.95	237.58	263.66
515	8.58	0.776	68.35	0.278	0.521	124	502.6	10	7.8	27.95	239.91	262.69
520	8.67	0.776	68.35	0.278	0.521	125	503.9	10	7.8	27.95	242.24	261.71
525	8.75	0.776	68.35	0.278	0.521	125	505.3	10	7.8	27.95	244.57	260.72
530	8.83	0.776	68.35	0.278	0.521	125	506.6	10	7.8	27.95	246.90	259.73
535	8.92	0.776	68.35	0.278	0.521	126	507.9	10	7.8	27.95	249.22	258.72
540	9.00	0.776		0.278		126	509.3	10	7.8	27.95	251.55	257.71
545	9.08	0.776	68.35	0.278	0.521	126	510.6	10	7.8	27.95	253.88	256.69
550	9.17	0.776	68.35	0.278	0.521	127	511.9	10	7.8	27.95	256.21	255.65
555	9.25	0.776	68.35	0.278	0.521	127	513.2	10	7.8	27.95	258.54	254.61
560	9.33	0.776	68.35	0.278	0.521	127	514.4	10	7.8	27.95	260.87	253.57
565	9.42	0.776	68.35	0.278	0.521	127	515.7	10	7.8	27.95	263.20	252.51
570	9.50	0.776	68.35	0.278	0.521	128	517	10	7.8	27.95	265.53	251.45
	9.58				0.521	128		10			i	
575		0.776	68.35	0.278			518.2		7.8	27.95	267.86	250.37
580	9.67	0.776	68.35	0.278	0.521	128	519.5	10	7.8	27.95	270.19	249.29
585	9.75	0.776	68.35	0.278	0.521	129	520.7	10	7.8	27.95	272.52	248.20
590	9.83	0.776	68.35	0.278	0.521	129	522	10	7.8	27.95	274.85	247.11
595	9.92	0.776	68.35	0.278	0.521	129	523.2	10	7.8	27.95	277.17	246.01
600	10.00	0.776	68.35	0.278	0.521	130	524.4	10	7.8	27.95	279.50	244.89
605	10.08	0.776	68.35	0.278	0.521	130	525.6	10	7.8	27.95	281.83	243.78
610	10.17	0.776	68.35	0.278	0.521	130	526.8	10	7.8	27.95	284.16	242.65
615	10.25	0.776	68.35	0.278	0.521	131	528	10	7.8	27.95	286.49	241.52
620	10.33	0.776	68.35	0.278	0.521	131	529.2	10	7.8	27.95	288.82	240.38
625	10.42	0.776	68.35	0.278	0.521	131	530.4	10	7.8	27.95	291.15	239.23
630	10.50	0.776	68.35	0.278	0.521	131	531.6	10	7.8	27.95	293.48	238.08
635	10.58	0.776	68.35	0.278	0.521	132	532.7	10	7.8	27.95	295.81	236.92
640	10.67		68.35		0.521	132	533.9	10	7.8	27.95	298.14	235.75
					,							

645	10.75	0.776	60.25	0 270	0.521	132	E25	10	70	27.05	300.47	224 50
645	10.75	0.776	68.35	0.278	0.521		535		7.8	27.95		234.58
650	10.83	0.776	68.35	0.278	0.521	133	536.2	10	7.8	27.95	302.80	233.40
655	10.92	0.776	68.35	0.278	0.521	133	537.3	10	7.8	27.95	305.13	232.22
660	11.00	0.776	68.35	0.278	0.521	133	538.5	10	7.8	27.95	307.45	231.02
665	11.08	0.776	68.35	0.278	0.521	133	539.6	10	7.8	27.95	309.78	229.83
670	11.17	0.776	68.35	0.278	0.521	134	540.7	10	7.8	27.95	312.11	228.62
675	11.25	0.776	68.35	0.278	0.521	134	541.9	10	7.8	27.95	314.44	227.41
680	11.33	0.776	68.35	0.278	0.521	134	543	10	7.8	27.95	316.77	226.20
685	11.42	0.776	68.35	0.278	0.521	135	544.1	10	7.8	27.95	319.10	224.97
690	11.50	0.776	68.35	0.278	0.521	135	545.2	10	7.8	27.95	321.43	223.75
695	11.58	0.776	68.35	0.278	0.521	135	546.3	10	7.8	27.95	323.76	222.51
700	11.67	0.776	68.35	0.278	0.521	135	547.4	10	7.8	27.95	326.09	221.27
705	11.75	0.776	68.35	0.278	0.521	136	548.4	10	7.8	27.95	328.42	220.03
710	11.83	0.776	68.35	0.278	0.521	136	549.5	10	7.8	27.95	330.75	218.78
715	11.92	0.776	68.35	0.278	0.521	136	550.6	10	7.8	27.95	333.08	217.52
720	12.00	0.776	68.35	0.278	0.521	136	551.7	10	7.8	27.95	335.40	216.26
725	12.08	0.776	68.35	0.278	0.521	137	552.7	10	7.8	27.95	337.73	214.99
730	12.17	0.776	68.35	0.278	0.521	137	553.8	10	7.8	27.95	340.06	213.72
735	12.25	0.776	68.35	0.278	0.521	137	554.8	10	7.8	27.95	342.39	212.44
740	12.33	0.776	68.35	0.278	0.521	137	555.9	10	7.8	27.95	344.72	211.16
745	12.42	0.776	68.35	0.278	0.521	138	556.9	10	7.8	27.95	347.05	209.87
750	12.50	0.776	68.35	0.278	0.521	138	558	10	7.8	27.95	349.38	208.58
755	12.58	0.776	68.35	0.278	0.521	138	559	10	7.8	27.95	351.71	207.28
760	12.67	0.776	68.35	0.278	0.521	138	560	10	7.8	27.95	354.04	205.98
765	12.75	0.776	68.35	0.278	0.521	139	561	10	7.8	27.95	356.37	204.67
770	12.83	0.776	68.35	0.278	0.521	139	562.1	10	7.8	27.95	358.70	203.36
775	12.92	0.776	68.35	0.278	0.521	139	563.1	10	7.8	27.95	361.03	202.04
780	13.00	0.776	68.35	0.278	0.521	139	564.1	10	7.8	27.95	363.36	200.72
785	13.08	0.776	68.35	0.278	0.521	140	565.1	10	7.8	27.95	365.68	199.40
790	13.17	0.776	68.35	0.278	0.521	140	566.1	10	7.8	27.95	368.01	198.06
795	13.25	0.776	68.35	0.278	0.521	140	567.1	10	7.8	27.95	370.34	196.73
800	13.33	0.776	68.35	0.278	0.521	140	568.1	10	7.8	27.95	372.67	195.39
805	13.42	0.776	68.35	0.278	0.521	141	569	10	7.8	27.95	375.00	194.04
810	13.50	0.776	68.35	0.278	0.521	141	570	10	7.8	27.95	377.33	192.70
815	13.58	0.776	68.35	0.278	0.521	141	571	10	7.8	27.95	379.66	191.34
820	13.67	0.776	68.35	0.278	0.521	141	572	10	7.8	27.95	381.99	189.98
825	13.75	0.776	68.35	0.278	0.521	142	572.9	10	7.8	27.95	384.32	188.62
830	13.83	0.776	68.35	0.278	0.521	142	573.9	10	7.8	27.95	386.65	187.26
835	13.92	0.776	68.35	0.278	0.521	142	574.9	10	7.8	27.95	388.98	185.89
840	14.00	0.776	68.35	0.278	0.521	142	575.8	10	7.8	27.95	391.31	184.51
845	14.08	0.776	68.35	0.278	0.521	143	576.8	10	7.8	27.95	393.63	183.13
850	14.17	0.776	68.35	0.278	0.521	143	577.7	10	7.8	27.95	395.96	181.75
855	14.25	0.776	68.35	0.278	0.521	143	578.7	10	7.8	27.95	398.29	180.37
860	14.33	0.776	68.35	0.278	0.521	143	579.6	10	7.8	27.95	400.62	178.97
865	14.42	0.776	68.35	0.278	0.521	144	580.5	10	7.8	27.95	402.95	177.58
870	14.50	0.776	68.35	0.278	0.521	144	581.5	10	7.8	27.95	405.28	176.18
875	14.58	0.776	68.35	0.278	0.521	144	582.4	10	7.8	27.95	407.61	174.78
880	14.67	0.776	68.35	0.278	0.521	144	583.3	10	7.8	27.95	409.94	173.37
885	14.75	0.776	68.35	0.278	0.521	144	584.2	10	7.8	27.95	412.27	171.96
890	14.83	0.776	68.35	0.278	0.521	145	585.1	10	7.8	27.95	414.60	170.55
895	14.92	0.776	68.35	0.278	0.521	145	586.1	10	7.8	27.95	416.93	169.13
900	15.00	0.776	68.35	0.278	0.521	145	587	10	7.8	27.95	419.26	167.71

Per il principio dell'invarianza idraulica il volume d'invaso risulta pertanto pari a 294.68 m³.

Il tempo critico calcolato risulta di circa 245 min.

4.3.2 Utilizzo delle CPP a tre parametri

L'impostazione concettuale è ovviamente la stessa che con le curve a due parametri, si semplifica però notevolmente la scelta dei parametri della curva di possibilità pluviometrica, essendo unica per tutte le durate di pioggia compresa tra i minuti e le 24 ore.

Fissato un tempo di ritorno di 50 anni, i parametri *a, b* e c delle CPP, per i vari intervalli temporali, sono dati dalla tabella in fig. 3 (rif. Zona Sud occidentale SW):

- a =39.5 mm min -1
- b = 14.5 min
- c = 0.817

Considerando l'area complessiva di 7.764.17 m 2 con un coefficiente di afflusso in differenza $\Delta \phi$ pari a 0.521 ed imponendo un coefficiente udometrico consortile in

uscita pari a u=10 l/s si va a calcolare il volume di laminazione mediante l'espressione:

$$V_{inv,cr} = S^* \varphi^* [(a^*t)/(b+t)^c] - Q_{out}^* t$$

Si riporta di seguito il calcolo del volume d'invaso:

Comune di

Tempo di ritorno [anni] 50

Zona

PARAMETRI IN INGRESSO

Padova	-	50	-
Coefficiente d'afflusso k		0.521	[-]
Coefficiente udometrico imposto allo scarico	5	10	[l/s, ha]
Superficie intervento	64 5	7,764	[m ²]

RISULTATI

Parametri della curva di possibilità pluviometrica $h = \frac{a \cdot t}{(t+b)^c}$

Padova

SUD OCCIDENTALE

$(t \cdot$	$+b)^c$	
a	39.5	[mm mi
b	14.5	[min]

0.817 [-]

Tempo critico	204	[min]
Tempo critico	3.39	[ore]
Volume specifico richiesto per l'invarianza	393	[m ³ ha ⁻¹]
Volume richiesto per l'invarianza	304.7	[m ³]

(Tab. 4)

Per il principio dell'invarianza idraulica il volume d'invaso risulta pertanto pari a circa 304,7 m³.

5.0 INDICAZIONI PROGETTUALI, SCELTE OPERATIVE E PRESCRIZIONI TECNICHE

I calcoli effettuati sia con le CPP a due parametri sia con le CPP a tre parametri dimostrano che, data una precipitazione di progetto con le caratteristiche riportate, per il corretto smaltimento delle acque meteoriche raccolte sulla superficie interessata dall'intero intervento, è necessario predisporre <u>un volume di invaso di almeno 304,7 m³.</u>

Tale valore risulta comunque concorde a quello indicato dalla valutazione di compatibilità idraulica realizzato dal Commissario Delegato concernente gli eccezionali eventi meteorologici del 26 settembre 2007 con le curve a tre parametri.

Di seguito si riportano i punti essenziali delle indicazioni progettuali che si devono adottate come buone regole di progettazione idraulica e le prescrizioni di validità generale disposte in merito a tali progettazioni dai Consorzi:

- Dovranno essere limitate al minimo necessario le superfici impermeabili,
 lasciando ampia espansione alle zone a verde.
- Le aree a verde dovranno essere poste ad una quota inferiore di almeno 5 cm rispetto ai piani di eventuali manufatti.
- La progettazione degli interventi dovrà prevedere il ripristino dei volumi di invaso: per il caso in esame, vista l'oggettiva impossibilità dello sviluppo di un invaso di tipo "aperto", mediante invasi superficiali (risezionamento delle affossature esistenti, realizzazione di nuove affossature, bacini di detenzione, ecc), sarà necessario predisporre soluzioni alternative

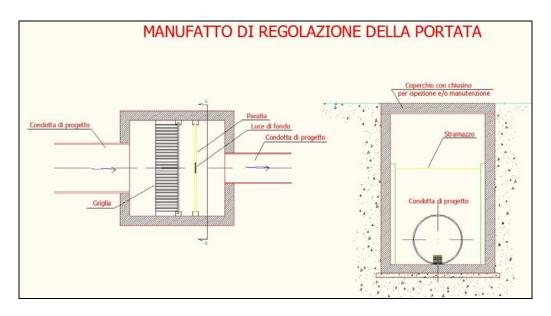
A seguito delle considerazioni sopra esposte si ritiene necessario predisporre i volumi d'invaso necessari mediante il sovradimensionamento delle tubazioni delle acque bianche mediante posa di tombotti o scatolari ipotizzabili lungo i lati nord ed est del lotto n° 2.

6.0 CARATTERISTICHE DELLE CONDOTTE - ACQUE BIANCHE

Si prevede che le acque bianche vengano raccolte mediante dei pozzetti, collegati da condotte opportunamente dimensionate con diametri in aumento verso il punto di raccolta e che dovranno essere recapitate presso un punto di ricezione (tombotti e/o scatolari), che nel caso specifico risulta la fognatura pubblica presente lungo Via Oglio, previa la predisposizione di un manufatto di controllo della laminazione in uscita e un tubo di raccordo tra il manufatto ed la fognatura comunale.

6.1 Descrizione della rete e delle misure compensative adottate.

La rete delle acque bianche che andrà a servire il lotto in esame sarà costituita da condotte in CLS con dimensione interna utile e pendenza da calcolare in fase di progetto definitivo da allegare alla presente relazione.


- Al termine della linea principale, prima dell'inserimento nella rete esterna, sarà posto in opera un dispositivo che limiti la portata scaricata ad un valore corrispondente a quello generato dal bacino nella configurazione preesistente all'intervento (nel ns. caso si fa riferimento a 10 l/s * ha); analogamente tutto il sistema dovrà essere configurato in modo che la portata scaricata non superi mai (se non per eventi estremi) tale valore, portando a sfruttare in modo ottimale i volumi di laminazione messi a disposizione.
- Le acque nere saranno collettate alle corrispondenti linee separate, afferenti agli appositi sistemi di ricezione.

6.2 Dimensionamento del dispositivo di laminazione

Per l'area in oggetto si fa riferimento alla portata specifica massima di 10 l/s x ha. Ne consegue che il manufatto di laminazione dovrà essere dimensionato in modo da consentire lo scarico di una portata massima pari a:

$$S \cdot u = 0,7764ha \cdot 10 \frac{l}{s \cdot ha} =$$
7.76 I/s

(sezione "tipo" del manufatto limitatore di portata)

Il manufatto da realizzare è costituito da una camera di raccolta e da una seconda camera da cui si diparte la tubatura di scarico.

Il setto di separazione delle due camere è dotato di un foro di forma rettangolare o circolare con superficie di scarico dimensionata nel modo seguente:

Determinazione delle dimensioni della bocca tarata per il rilascio della potata Qu $S = \frac{q}{\mu \sqrt{2\,gh}}$

portata (Qu)	coeff. μ = 0,69	tirante h	sezione d'uscita S	foro quadrato	foro circolare
q = I/sec		m.	cm ²	lato = cm.	D = cm.
7.76	0.69	1.00	25.27	5.03	5.67
1.10	J 0.09	1.00	25.27	5.03	5.6 <i>1</i>

Ovvero delle dimensioni di φ 60 mm. Date le ridotte dimensioni risulta consigliabile comunque l'adozione di un diametro minimo in uscita di 100 mm.

La parte superiore del setto funge anche da sfioratore superficiale di troppo pieno (che funziona solo in caso di emergenza) garantendo la sicurezza della rete.

La quota di sfioro è fissata in relazione al massimo riempimento ammesso per le tubazioni da posare.

La protezione del foro di scarico dovrà essere garantita mediante l'installazione di una griglia mobile oggetto di pulizia periodica per evitare intasamenti del foro.

7.0 INDICAZIONE PER LA MANUTENZIONE

Un'adeguata manutenzione della rete è indispensabile per un efficiente funzionamento del sistema di smaltimento delle acque bianche.

Gli eventi meteorici portano in rete una certa quantità non trascurabile di sedimenti di piccolo diametro (sabbie, limi e argille) che hanno la tendenza a sedimentarsi all'interno della pozza di detenzione riducendone pertanto il volume d'invaso.

Non è inoltre da trascurare l'intasamento dei tombini, delle caditoie e delle bocche di lupo dovute a carte, foglie e dai sedimenti grossolani (sabbie e limi). Per un corretto funzionamento delle rete delle acque bianche risulta pertanto necessario procedere ad una pulizia periodica delle condutture (mediante ad esempio canaljet) in particolar modo indicata nel periodo autunnale. E' opportuno pertanto prevedere tra la stagione autunnale e quella invernale la pulizia dei tombini, delle bocche di lupo e delle condotte. Particolare attenzione dovrà essere posta, soprattutto nel caso di impaludamento, della pulizia e del ripristino della pozza disperdente ed il controllo del manufatto di sfioro, essendo il punto critico per la regimentazione delle acque, per questo motivo la verifica e l'eventuale pulizia dovranno essere eseguite con maggior frequenza e dopo ogni evento meteorico significativo.

Le acque nere saranno collettate alle corrispondenti linee separate, afferenti agli appositi sistemi di ricezione.

Dr. Geol. Devi Fincato

DEIGE

Albo dei Geologi della Regione Veneto N. 549

